UNCLASSIFIL.

SSCURITY CLASSIF] HIS PAGe

-
o ®

DTIC FILE COPY

4

REPORT DOCUMENTATION PAGE

ns
>

2b.

SEI-88-11-15-WB

1b. RESTRICTIVE MARKING3S

AD-A218 372 ——

3. DISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public rolease,’

UNLIMITED dlstributionunlimiteu

d FOAFUMIVIING URANILA TN REFWURE NUIVIBE (D

5. MONlm‘ik[lON gBRLNWBS(“ 1

6a. NAME OF PERFORMING ORGANIZATION
Techno-Sciences, Inc.

60. QFFiCE SYMBOL
(if applicable)

7a. NAME OF MONITORING ORGANIZATION

6¢. ADCRESS (City, State, and ZIP Code)
7833 Walker Drive, Suite 620
Greenbelt, Maryland 20770

7b. ADORESS {City, State, and 2IP Code)

AFOSR/NA
Bolling AFB DC 20332-6448"

3a. NAME OF FUNDING / SPCNSORING
ORGANIZATION Ajir Force Office

: of Scientific Research

JFFICE SYMBOL
(If applicalje)
ao‘u¥

8b

9. PROCUREMENT INSTRUMENT (DENTIFICATION NUMBER

&1-C.- 00*

8¢c. ADDRESS (City, State, and ZIP Code)
Bldg. 410,
Bolling AFB, DC 20332-6448

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
NO.

WORK UNIT
ACCESSION NC

11, TITLE (Incluce Security Classification)

Nonlinear Dynamics and Control of Flexible Structures

12. PERSONAL AUTHOR(S)

W. Bennett, H. Kwatny, G. Blankenship, 0. Akhrif

13a. TYPE OF REPORT
Annual

16. SUPPLEMENTARY NOTATION

13b. TIME
FROM

SIS o 888

14, Pf‘}i ?7 §\§?0RT (Year, Month, Day) ]5S. PA%'? COUNT

COSATI CODES

FIELD GRQUP SUB-GRCOUP

Ui)EC’

See Reverse

/

19 ABSTRACT (Continue on reverse if necessary and identify by bRck num

A

TERMS Contmuan reverse if necesry and identify b‘y block numbe

DTIC

ELECTE
FEB26 IQQOD

20. DISTRIBUTION / AVAILABILITY OF/ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
BI UNCLASSIFIED/UNLIMITED SAME AS RPT OTIC USERS UNCLASSIFIED
223. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include e) | 22¢. OFFICE SYMBOL
‘Lt. Col. ‘George Haritos (202) 767 R AFOSR/NA
DD FORM 1473, 34 maRr 83 APR eaition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete. UNCLASSIFIED




ABSTRACT

‘The unprecedented requirements for rapid retargeting and precision
pointing for spaced-based directed energy weapon platforms is the
prime driver behind the reported modeling and control study. The
combination of such requirements demand a comprehensive dynamic
mcdel of the nonlinear multibody dynamics of typical space
platforms for such weapon 1including the interaction with the
platform structural flexure effecting principal weapon system
effective Line-OF—Sig@p* Tnis report describes the first year
erfort of a three.,year, project which focuses on: (1) the
development of comprehensive; generic nonlinear dynamical models
for typical space-based plat forms, (2) the deveilopment of high
performance, nonlinear control laws for rapid slewing and precesion
pointing of primary weapon system payload apertures, and (3) tne
design of a series of laboratory experiments to verify and tes<
the control laws developed. The validation of the analytical
mccdels and the required control thecry for the resulting class of
ncnlinear system is described in this report. Simulation results
arse given for a simplified benchmark mcdel of a space-based laser
slewing control and consideration fcor compensation for structural
flexure effecting optical LOS using optical steering mirrors is
discussed. (gm/»
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This report contains details of the first year of a three year research study on nonlinear mod-
eling and control of flexible space structures with application to rapid slewing and precision
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- 31 Aug. 1988.
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1 Research Objectives and Project Summary

The primary research ohjectives of the first year effort in nonlinear modeling and control of
flexible space structures has been in two areas. First, we have considered nonlinear modeling
of a generic class of multibody systems with elastic interactions with primary focus on a
generic model for structural interactions effecting laser system line-of-sight (LOS) pointing
for a Space-Based Laser (SBL) weapon. Second. we have developed practical extensions and
applications of the theory of nonlinear control system synthesis based on the ideal of effective
global linearization by feedback transformation. Our approach to nonlinear control has been
based on the ideal of Partial Feedback Linearization (PFL) with respect to a principal system
output representing optical system pointing.

During the performance period 1 September, 1987 ~ 31 August, 1988 we performed an
extensive literature survey of available dynamic models and control system issues relating
to primary system performance for a space-based Directed Energy Weapon (DEW). Critical
requirements for precision line-of-sight (LOS) pointing and tracking together with require-
ments for rapid slewing of spacecraft primmary body together with possible articulated weapon
system aperture have been isolated as important control problems relating to system perfor-
mance (see Figure 1.1). Additionally, beam quality and jitter is related to probably of kill
and is largely effected by controlling alignment of elements within the beam expander. Qur
efforts have focused on developing a generic collection of models for SBL type systems in-
cluding provisions for: 1) a primary body with attitude control components including either
reaction wheels or control moment gyros and reaction jets, 2) a secondary body representing
the beam expander base structure, and 3) a continuum beam representing structural support
for the secondary mirror of the beam expander. The modeling approach is readily adaptable
to the generic problem of rapid slewing and precision pointing of a multibody system subject
to elastic deformation. We have developed a series of generic models of increasing complexity
to study the critical nonlinear dynamics effecting LOS pointing and optical system alignment
for a benchmark SBL system. A computer simulation was developed and preliminary system
tradeoffs are detailed in this report.

In the area of nonlinear control design for rapid slewing and precision pointing we have
demonstrated the potential for decoupling control synthesis wherein the flexible dynamics of
the weapon system secondary mirror support structure can be decoupled from the effective
weapon system LOS by the introduction of nonlinear feedback. The generic class of such
transformations obtained for the SBL slewing models we have investigated have a special
structure which permits the decoupling/linearizing transformation to be implemented sim-
ply by using multiple actuators. One way in which this may be used to advantage is in
the integration of continuous mode (e.g. reaction wheels, CMG's, etc.) and discontinuous
(on/off) actuation (e.g. jets). In particular, continuous actuation can be used to effect the
exact linearizing transformation and decoupling of the structural flexure from the LOS while
reaction jets can be used for large angle slewing control. This has significant advantages for
rapid slewing.

We have also identified the potential for the application of low cost accelerometers as the
primary sensors for implementing the feedback linearizing control laws. The primary benefits
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Figure 1.1: Generic Space-Based Laser System with Multiple Control Systems

which may accrue from the use of a relatively large number of accelerometers mounted on
certain critical structural components are 1) a reduction in the sensitivity of the decoupling
control to detailed knowledge of the elastic stiffness and damping properties of the structure
and 2) simplified computational requirements for on-line implementation of the nonlinear
decoupling control.

A critical observation in our studies of control architectures for SBL systems is the inte-
gration of a variety of actuators for spacecraft attitude control (e.g. thruster jets, momentum
wheels, CMG’s, etc.), multibody articulation. optical system components (e.g. steering and
deformable focusing mirrors), and structural vibration control (e.g. proof mass devices,
embedded piezoelectrics, etc.) to achieve principal system performance objectives. In this
report we give several examples including simulation results demonstrating options for the
integration of various actuators to achieve optical system LOS decoupling from structural
deformation using optical components.

A critical feature of the control integration problem for rapid slewing is the relative levels
of control authority and control bandwidth achievable from the above spectrum of actuator
technologies. The system requirements study [Gea88] presents a comprehensive assessment of
engineering design requirements for control of SBL type systems and motivates requirements
for 1) torque shaping for deformation control, and 2) actuator sizing for slewing control. In
a series of papers and a technical report which we have included as an appendix, Prof.
Dwyer describes a design approach for deformation shaping of torques required for feedback
linearization. In the second year effort we will study the application of these methods for
implementing rapid slewing with available torque actuators.
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2 Status of the Research Effort: Initial Conclusions

The performance requirements of space-based directed energy weapons as well as other large
aperture optical systems will place unprecedented demands on the control precision for such
critical mission objectives as optical systems pointing and tracking and retargeting maneu-
vers. System requirements for rapid retargeting typically involve large angle slewing maneu-
vers involving the spacecraft bus together with large optical system structures which may or
may not be articulated as part of slewing. Such maneuvers will involve nonlinear kinematics
and gyroscopic coupling, which is further complicated by coupling with the deformation of
the optical train support structure.

Our objective is to demonstrate the feasibility and benefits of advanced nonlinear control
design methods for rapid slewing and precision pointing of spaced-based platforins subject
to structural flexure effecting primary system LOS and focusing. Our primary focus comes
from requirements for rapid retargeting of space based laser systems. To be meaningful, such
an analysis must be based on models of realistic scale. At the same time, the precise config-
uration of potential systems is not yet known. Since various system configurations including
space and laboratory experimental systems are anticipated the focus of our FY88 effort was
on modeling a generic class of multibody systems with elastic structural interactions which
can be used to study qualitative nonlinear behavior of such systems.

In this report we describe a framework for the systematic modeling of multibody flexible
structures. It should be noted that multibody dynamics, including modeling, is an area
of intense current research. The approach described here is focused to address the issues
relevant to control system design. Among these are three general considerations:

e Different views of the same system are appropriate at different stages of design.

e Models must provide insights into the system qualitative behavior and must also pro-
vide useful vehicles for computation.

e The models must interface easily to standard structural design and analysis tools for
ease of data transfer.

The primary goal of the modeling effort is to provide a basis for design and analysis of
control systems for rapid slewing, precision pointing, and structural vibration control. In the
first year effort we have focused on nonlinear methods for the first two control system design
requirements. Our methods are based on a blend of state-of-the-art methods for nonlinear
control system design based on modern methods of differential geometry and Eract Feedback
Linearization (EFL) and well proven mcthods of linear system control system synthesis and
design based on frequency response ri thods. The balance of considerations for state-space
or internal dynamical modeling and input-output or transfer function models has proven
increasingly important in providing a quantifiable basis for robust control system design for
linear systems. The methods of nonlinear EFL, however, are primarily based on state space
models. In this report we indicate how the input-output characterization of an important
class of nonlinear systems can play an important role in control system design for rapid
slewing.
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The primary goal of this project for the next year is the design of a series of laboratory
experiments to demonstrate the viability of the nonlinear control methods described in this
report. One central issue in practical applications and laboratory experiments is the extent
to which modeling assumptions can effect results. This report describes the basis for the
nonlinear control methods of EFL and shows that in principal they are based on “exact
cancelation” of certain critical nonlinear terms. Thus we have included a survey of methods
for robust nonlinear control system design for a variety of methods related to EFL in Sec-
tion 7. In the Research Progress and Forecast Report [BBK88| we discussed the relationship
between nonlinear control based on EFL and control systems using the idea of a “sliding
mode” (sometimes called Variable Structure Control). These methods implement a high gain
control which can be inherently robust under certain conditions by utilizing discontinuous
(switching) controllers. We believe the integraticn of discontinuous and continuous mode
control actuation is an important—indeed essential—feature of rapid slewing control.

3 Evolution Equations of Lagrangian Dynamics

The formalism of Lagrangian dynamics begins with the identification of the configuration
space, i.e. the generalized coordinates, associated with the dynamical system of interest.
Once the configuration manifold, M, is specified we have the natural definition of velocity
at a point ¢ € M as an vector, ¢, in the tangent space to M at ¢, often denoted T, M. We
then define the state space as the union of all points ¢ € M along with their tangent spaces,
the so-called tangent bundle (c.f. [AM78, Arn78]) T,M. The evolution of the system in
the state space is characterized using Hamilton's principle of least action by the definition
of a Lagrangian L(q,q) : M x T,M — R. Hamilton’s principle says that the motion of a
dynamical system between times ¢, and ¢, is a “natural” motion if and only if

t2
§ [ Ldt=o. (3.1)

ty

or—accounting for the presence of external generalized forces, @—in its generalized form;

/g”(aL +QTéq) dt = 0. (3.2)
1

For distributed parameter systems (DPS), special care is required to properly characterize
the configuration space for modeling the system motions. The principal reasons for this
fact follow from the application of the models obtained; viz., the study of time evolutions
subject to control forces. First, control systems will inevitably involve the implementation
of feedback and we are therefore imimediately concerned with stability. An appropriate
notion of stability is central to the design of feedback control systems. For Lagrangian
systems the natural definition of stability is implicit in the structure of the state space
which for DPS is a function space and care must be exercised that the construction (and
assumptions) of the state space are consistent with the engineering control problem. Second,
it is often necessary to define finite dimensional approximations to DPS for a variety of
reasons including computer simulation. Again, our primary concern is in approximating the
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time evolution under the influence of control. As we will make clear in the following section,
the formulation of such models in a consistent way is inherently bound to the definition of
the configuration space. In this section we confine our discussion to the configuration space
for continuous systems with one spatial dimension.

The generalized coordinates are chosen so that all “nonworking” or geometric constraints
on the motion are eliminated. This is the key to the utility of the Lagrange formalism
for constructing the equations of motion. In the case of DPS any “geometric” boundary
conditions (which we will denote G) are therefore included as part of the definition of the
configuration space. All other boundary conditions necessary to complete the Euler-Lagrange
equations result from the application of Hamilton's Principle, (3.1) or (3.2). These are the
“natural” boundary conditions (denoted A).

An essential part of the definition of the configuration space in the infinite dimensional
case is the specification of the norm. Although all norms are equivalent in finite dimensions,
this is certainly not the case in infinite dimensions. We briefly summarize the main issues.
Consider functions v(z) defined on the domain = € [0,1] and let D v(z) denote the rtt
derivative with respect to =. We denote by H? the completion of the set of the set of
functions with p continuous derivatives and which satisfy

¢
||v||f, = /0 {IDPo(=)* 4+ ... + [v(2)|*}d: < o0 (3.3)

These are the Sobolev spaces [LioT1]. Equivalently, H? consists of those functions whose first
p derivatives belong to the Hilbert space of square integrable functions. Note that z € H*
implies ¢ € H'"! for i = 1,2,....

Let HZ denote the completion of the set of functions satisfying (3.3) as well as a pre-
scribed set of boundary conditions designated G. It is not necessarily true that all of the
functions in this new space satisfy the boundary conditions. The reason for this is that an
arbitrary sequence of functions, all satisfying the given boundary conditions, may converge
to a function which does not satisfy the boundary conditions. However, the following propo-
sition 1s true. Suppose the boundary conditions G involve derivatives of order s and none
higher. Then all of the functions in H§ satisfy the boundary conditions provided p > s.
Thus, a consistent definition of the configuration space is obtained if the specified norm is
compatible with the geometric boundary conditions.

Hamilton's principle may be used to derive the Euler-Lagrange equations and the natural
boundary conditions. The Euler-Lagrange equations are to be solved along with boundary
conditions B = G U N. In general, the Lagrangian will involve derivatives with respect to =
of order p and the Euler-Lagrarge equations will involve derivatives of order 2p. In finding
solutions ¢(t) we seek “weak” (sometimes called generalized or distributional®) solutions in
HE which satisfy Hamilton’s principle or “strong” (pointwise, genuine or classical) solutions
in HZP which satisfy the Euler-Lagrange equations. The results are equivalent (in HZ) when
both problems have solutions. The Euler-Lagrange equations may be given the interpretation
of an evolution equation as we sill describe below.

IThere are several approaches to developing the notion weak and strong solutions and many good reasons
for doing so. Thus, the proliferation of terminology carries with it sometimes subtle distinctions (c.f. {SF73,
RM57, Sta79]).
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Figure 3.1: Simple Cantilevered Beam

Finite Dimensional Approximation and Computer Simulation Finite dimensional
approximations to the system dynamics may be obtained by seeking an approximate solu-
tion to the Euler-Lagrange equations or to Hamilton's principle directly. The latter has the
advantage that solutions are to be sought in a larger space of admissible functions which pro-
vides a wider choice of approximating functions. Perhaps unexpectedly, this turns out to be
of fundamental significance in developing numerical solutions to the required evolution dy-
namics and for computer simulation. Furthermore, important links to the system physics are
retained through this modeling process. These observations appear consistent with many
standard engineering methods which introduce approximations to continuous, distributed
system dynamics by discretization of the variational problem underlying the Lagrangian
dyaninics [Mei67]. Indeed, this is the basis for the Finite Element Method (FEM) for evolu-
tion dynamics described in [SF73]. The simulation models developed in this study are based
on finite dimensional approximation using collocation by splines [Aga84, Sta79, Pre75]. Fur-
ther details of the method will be given in a later section with examples.

Next we consider some simple continuous systems arising in structural mechanics which
will illustrate the evolution modeling setup described above.

3.1 Example: Simple Cantilevered Beam

('onsider the cantilevered beam undergoing small transverse motions confined to the plane.
The beam is excited by a concentrated force, f(¢), and moment, m(¢), applied at the point
z=ae(0,1)

Timoshenko Model. Each cross section undergoes a displacement 7(z,t) and a rotation
#(=z.t). These are the generalized coordinates. The geometric boundary conditions are

G:1n0,1)=0 and ¢(0,1)=0.

Thus, the appropriate configuration space is Hj. The Lagrangian is

a0\ L (9 AN L B
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and the virtual work §W = QT8q due to the external forces is
¢
§W = /0 (F(£)8(= = a)én + m(t)8(= — a)§)d=,
where p is the mass density, A, the cross section area, I, the moment of inertia, E, the

modulus of elasticity, and kG, the effective shear modulus. Upon application of Hamilton's
principle, we obtain the partial differential equations

8%y 0 an
p~18t2 32 [HC‘l (5‘.. )} + f(t)é(z — a),

¢ 0 o on . _
IW = (9.. [E[(3~)+RG (3:_ )]-{—m(t)é(‘. a),

and the natural boundary conditions

il

on(¢.t)
0z

N ;{GA( 3-

-¢)—0 and El(aw t))

Thus. we have the evolution equation

pd 0 7\ _ 0 [rkGAZ —xGA 7\ ( f(b) (= — a)
0 pl |\ ¢ 52| wCA EIZrGA [\ ¢ ) "\ m@e) )77 °
where we interpret [5(-,t), ¢(-,t)]7 as an element in H3.

Bernoulli-Euler Model. Suppose that we consider the same situation with the additional
Bernoulli-Euler assumptions [BK89]. These are

1. rotational inertia is negligible, pJ — 0,
2. shear deformation is negligible, . — ¢ — 0.

The deformed beam configuration is completely specified by n(z,t). The geometric boundary
conditions are

In(0,1)

“~

G:70,1)=0 and =0.

Notice that the appropriate configuration space is HZ. The simplified Lagrangian is

L =/0‘ [,LpA (%’})2— LET (322) ]d-

and the virtual work expression also simplifies to

/Ol {f(t)é(: —a)bn + m(t)é(z — a)é (g—g)} dz

= /(;t {f(t)é(:—a)+m(t)6‘1(z—a)}én d=. (34)

oW
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The evolution equation is

5? 9?
pAnR + 5.2 [E]a—j} = f(t)8(z —a) + m(t)6" (= — a),

which is to be interpreted on Hg with

9°n(€,t) (¢, t)
N Elﬁ—zﬂ and E[—aT———O.

4 Generic Models for Multibody Flexible Spacecraft

In this section we describe the basis for the formal development of a class of evolution mod-
els for multibody systems with elastic interactions. We follow the approach suggested by
Baillieul and Levi [BL87]. As will be seen, the formulation captures the essential evolution
dynamical structure of the system without requiring detailed knowledge of its internal con-
figuration. As such this framework provides a consistent modeling approach for developing
a hierarchy of models with increasing internal complexity and fine structure. The main idea
is to isolate a “primary body” and to attach a reference frame to it at a convenient loca-
tion for measuring attitude and displacement dynamics. The motion of all other spacecraft
components will then be measured relative to this frame.

Throughout this report we will use the notational conventions given in Table 4.1. Con-
sider a reference frame fixed in the primnary body, with origin located by the position vector
R € R* and angular orientation denoted by L € SO(3), both relative to a fixed inertial frame
(see Figure 4.1). L can be parameterized by the Euler angles? ', #, ¢ representing sequential
rotations about the axes 3,2,1, respectively:

cos f cos cos fsin 6 —sin @
L= | singsinfcosy —cosdsiny sindsinfsiny + cospcosy' singcosf | . (4.1)
cos@sin fcosy + sin @siny cos psinfsiny — sin dcosy* cos dcost

A fundamental kinematic relationship is

L(t) = -Q(t)L(t) (4.2)
where
0 —Wws3 w2
Q= w3 0 —uw (43)
—Wws Wi 0

and w = (wy.wq,w3)T is the primary body (inertial) angular velocity as measured in the

body coordinates.

?We use the so-called NASA standard or 321 convention [Gol82].
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Figure 4.1: Standard Coordinate Frame for Modeling

Notation Explanation

T, 1=1,2,... element of a vector z
zT transpose of vector
=9 time differentiation

partial differentiation

natural (Hilbert space) inner product
natural (Hilbert space) norm
differential variation

vector cross product of = and y

Table 4.1: Standard Notation for Lagrangian Mechanics

-1
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Define £ € R® as ¢ = (1,8, $)T. Then an equivalent relation? is

. 1 0 —sin §
E=T(w, T7'€)=1]0 cosy cosfsiny |. (4.4)
0 —siny cosfcosy

The body frame position and orientation can be characterized as a point in the special
Euclidian group, SE(3,R), each element of which can be represented by a matrix

T
X = [ LO }12 } . (4.5)

The positions of all other elements of the system are measured relative to the primary body
frame. We identify each particle (or element), P, by its “undeformed” position, z, in the
primary body frame. Let u(:z,t) denote the deformed position of P. Furthermore, we fix
a coordinate system in each particle with origin at u(:z,¢) and aligned—in the undeformed
state—with the body axis coordinates. Let ¢(z,t) € SO(3) denote the orientation of P in the
deformed state as measured in the primary body coordinates. Note that in the undeformed
state

1 0 0]
[undeformed =1010 (46)
0 0 1]
and for small relative motions?*
1 O
gama” = —l/’ 1 ¢ . (47)
g —-¢ 1 |

The inertial coordinates U/(z,t) of a particle P can be obtained from the body coordinates
u(z.t) via the relation

U(z,t) = LTu(z,t) + R. (4.8)

Note also that r .
X(t)z L (tSQ(t) R(()t) ‘ (4.9)

Also. a direct computation yields

4y
dt
3Equation (4.4) is essential to the analytic framework for multibody modeling. Alternate parametrizations
of SO(3)—such as the Cayley-Rodrigues parameters [Dwy84]—can be used to advantage and the general
form remains intact.

*This is a standard assumption in modeling small elastic deformation. A considerably different class
of models is obtained using exact (i.e. “geometric”) deformation model as in {Pos88]. Since our primary
concern in this study is to develop a class of models applicable for flexure modeling affecting precision optical
systems we retain the small deformation assumption throughout.

LT(¢)[Qu + 4] + R(t) (4.10)
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The kinetic energy of the system can be written in terms of the generalized coordinates
7 = (£, R, u) in the form

T(q.9)

1 }2 Y T 112
5/suz 2dm 2/S||L [Qu + ul) + B|dm

!

/5 1Qu + w)|]® +2(Qu + w. LR) + | B2 dm (4.11)

where S denotes that the integral is to be taken over the entire system.

4.1 Lagrange's Equations

In addition to the kinetic energy. T'(q.q). we assume that a potential energy function V'(q)
is also available. Then Lagrange's equations take the form

d 8T BT oV

# o o¢ e -

d 8T 8T oV

4oL of oV 4.
%3k #RTarR - 9 (4.12)
46T ST v

dt v bu  Su %

where the generalized forces are defined in terms of the virtual work expression,
SW = Qfdé + QRdR + QL é6u. (4.13)
Now, we define the system angular momentum with respect to the origin of the body frame
H= /Su x [(wx u+u)+ LRldm = a + /su x LR dm. (4.14)
With some calculation® these equations reduce to

System Angular Momentum

. v
FT(ﬁ)[d+wxa]+/11(:,t)><LRdm:Q —%6—, (4.15)
s
System Linear Momentum
/[dLT fwxu)+ Bldm = Qr - 2% (4.16)
— N Ndm = - — )
Slgrl (et AT 3R
. sV
u“—i—wx(wxu)+wxu+'2w><u,+LR:Qu—:q——. (4.17)
u
Equivalently we obtain
IT(6)Ji+wx Tw)+mex LI%%—I’T(f)D/ u><[w.\<u+u,]dm+/ ux LRdm = Qf—a—‘: (4.18)
3 3 o€

> Appendix A contains some identities useful for these calculations.
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- . DRy 4 L ov
mR +mlL [wx(wxc)+w><c]+/sL (D u+LR]dm:QR—ﬁ (4.19)
D LR =0, - " 4.20
t = —_— — 1.
L u 511 ( )
where the operator D is defined by
D)= () 4w x ()
= w

Note that, in applications, the integrals in (4.15)-(4.17) or (4.18)—(4.17) would not be
evaluated directly. Instead, they are to be replaced by momentum expressions in terms of
an appropriate choice of generalized coordinates.

4.2 Generic Models for Slewing and Pointing of Precision Optical Structures

In this section we develop several benchmark generic models for rapid slewing and precision
pointing of flexible space structures which are motivated by problems relating to control
of precision optical structures subject to elastic interactions. Such problems arise in re-
quirements for rapid retargeting coupled with precision pointing for space-based laser (SBL)
svstems. The models reflect generic qualitative dynamical properties of such systems. In a
subsequent section we develop a simulation model with physical parameters obtained from
the benchmark SBL structural model developed in [Lea87].

The models developed in this section focus on primary sources of structural interaction
with principal body slewing maneuvers affecting system LOS pointing. Modeling assump-
tions used to characterize generic responses are based on the initial system level tradeoffs
described in the R & D Associates report [Lea8T7]. This study indicates that the principal
source of structural flexure affecting laser LOS is within the beam expanded optical train—
the principal structural component being the metering truss supporting the relative position
and orientation of the primary and secondary mirrors. Our initial or first-level model assumes
the beam expander primary mirror and support is rigidly attached to the spacecraft body
and only the metering truss is subject to flexure. In the second model we include provisions
for articulation of the SBL beam expander with respect to the SBL system spacecraft body
using a gimbaled joint.

4.2.1 Example: Rigid Body With 1-Dimensional Appendage

We consider a single rigid body attached to a flexible appendage as illustrated in Figure 4.2.
The system kinetic energy can be expressed as

T - / 1Qul|? + 2(Qu. LR) + || R||*dm (4.21)
rb
+ §/ 1Qu + u,]|> + 2(Qu + ue, LR) + ||R||*dm
fb
= %waIbwb — mycTQWLR + 15m¢,||}.2||2

[4 . .
44 [ 1Qun + mll? + 200+ n LR + I1RIP oA ds
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4
+%/(; {lws + &)  Iws + € ]}p d=

where ¢ € R° is the location of the rigid body center of mass in the body frame, my is the
mass of the rigid body, I, is the inertia tensor of the rigid body in the body frame, and
p is the mass density of the beam, 7(z,¢) is the position vector of points on the deformed
centerline of the beam in the primary body coordinate frame and &(z,t) = (¢,6, ¢)T(z,¢t) is
the beam angular deformation. We have assumed small deformation of the beam so that the
angular velocity of the beam section at z is

w(z,t) = wy + &(=,t)

up to first order in the angular deformation.

The potential energy of the system consists only of the potential energy associated with
deformation of the beam. Under Timoshenko beam assuinptions [CKEFKP68] the potential
energy function is

{
0
+ K1GA(m: — 0)? + 52G A2 — 8)? + pEA(ms: — 1)} dz (4.22)

[4
=+ [{ETKe) + (0. - PETS(. - )} dz

Viem) = 1 [ {GI(.) + EL(6.) + EIy(4.)

where the stiffness matrices are defined as

K = diag(GJ,El,, EL), S = diag(x1GA, k:GA, uEA),

0
P=j1
0

The system angular momentum vector 1s

and

[en T e

o O O
————

¢
a= Ibwb+/o (A7 x (wy x 7+ 9) + [w]pd=
so that equations (4.15)—(4.17) reduce to

TT(&)(Ioi + wh X Tyws)
[4
+/0 (TT(€)An X (mes + wy X (wh X 1) + @ X 7 + 203 X 1)

+ Anx LR+ (4 + wy x w)]p dz + me x LR = Qy,, (4.23)
. [4 .
mB +mLT(w x (wx c) + @ x c) +/ pA(LTD* + R)d= = Qg (4.24)
]
PA(Mee + wp X (wp X N) +wp X 7+ 2wy X7+ LR) = Q4 — S(n:. — P&:),  (4.25)
Pl + i +ws x (ws + &)] = Q¢ ~ K&.. + PTS(n. — PE). (4.26)
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System Dissipation A simple model of generalized dissipation in the appendage can be
obtained by introducing a Rayleigh dissipation function. We formulate such a function based
on the assumption that dissipation forces are proportional to beam deformation rates, i.e.
generalized coordinate velocities (7, and &) and strain rates ((n9;)e: — 8, (72)e: — &, &::).

14
R(ne. &) =1 /0 FZime + €TS8 + (1) Zame: + (€0)TZa(8e2) Yz (4.27)

where Z; = diag((i1. 2, (i3). From R(n,.€:) we obtain the generalized dissipative forces

SR _ _

T = = + :'3(7’t:: - Pft: )1 (428)

577t

SR _ _ _

e 26 + Za(ne: — Pét) + Zalse- (4.29)
t

4.3 Example: Articulated Bodies With Flexible Appendage

We now consider a modification of the previous Example which includes a second body
attached to the primary body with a three axis gimbal as illustrated in Figure 2. In addition,
the second body carries with it a reaction wheel package. The kinetic energy function is

T =iw] Lw, — 'mpcgﬂpLR + 1m,||R||?

primary body
+1wl Lw, — mueTQL{LR + Qpcgm} + tm||ILR + Qpcgm

second body (wheels locked)

T T
+lw; ws + w, Tws

reaction wheels

[4 . .
43 [0+ nl? + 2(2n + 1 LR + [ RIP}p ds
4
1 [ Rwp + €07 Iwy + €0} pd (4.30)

Note that ¢, and ¢, are the locations of the center of gravity of the primary body and
second body (including wheels) in their respective body coordinate frames. The vector cym
denotes the location of the three axis gimbal in the primary body frame. The matrix I,
is the primary body inertia tensor in the primary body frame, I, denotes the second body
inertia tensor with reaction wheels, and /; is the diagonal matrix of wheel inertias.

4.4 Simulation Example: Slewing in the Plane

C'onsider a rigid body with a flexible appendage attached which is restrained to motion in the
t x z plane which means that ¢,¢¥ = 0. In addition, we assume that axial beam vibrations
are negligible so that 73 = z, and that the translational velocity, R, is also negligible. A
control torque T} is applied to the rigid body.
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iz

Figure 4.2: Rigid Body with Flexible Appendage

beem expander
principal
body

CHG's
reaction
jets

optics
support
structure

Figure 4.3: Hinged Bodies with Flexible Appendage
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The formulation of the equations of motion follows the procedure outlined previously.
The system Lagrangian L =T — V' can be obtained by reduction of (4.21)-(4.22) under the
ahove assumptions to the form

{
L = ilw + /0 {lws(z = n) + ne)°pA + (wy + 6,)?pI }dz=
[2
- / [EI(6.) + wGA(n. - 8)} d: (4.31)
0

and the virtual work expression is

W = Tb 595

Notational conventions for the planar model. In the rest of this section we substitute
the symbol 5 for the first component of the lateral deflection 7, in an abuse of notation.
Whereas A denotes the rotational deformation of the appendage we denote by 8, (w;) the
primary body attitude angle (resp. angular rate).

Notice that the configuration space is S' x Hj, with generalized coordinates f, € S!,
(n.8) = Hi. and the geometric boundary conditions are

G: n(0,t) =0 and 6(0,¢) =0.

Thus following the previous approach the evolution equations can be written

¢
Ty +/0 {z(n + @z + w,;"r;)pA + (wy + B )pl}d: =T, (4.32)
pA(Me + wpz + wbzn) —cime — ca(mez: — 0:) + kGA(p.: — 60.) =0 (4.33)
pI(Wb + 9") — C29t - C3(T]” - gt) - C.;Ot:: + EIG:: - HGA(T]: - 9) =0 (434)

with natural boundary conditions

N @ n.(€.t)—8(€.t) =0 and 8.(¢,¢t) = 0. (4.35)

4.4.1 Finite Dimensional Model for Planar Slewing

From the discussion in Section 3 we some care must be exercised in introducing finite di-
mensional approximation of the DPS by discretization of the spatial coordinates so that
the resulting finite dimensional evolution model approximates the evolution dynamics of the
continuous system. One consequence of these remarks is that direct spatial discretization of
the DPS evolution equations (4.32)-(4.35) is not recommended. Rather the recommended
approach is to approximate the system Lagrangian (4.31) by FEM and then develop the finite
dimensional evolution model by applying variational arguments to the reduced Lagrangian.

For control system design we are ultimately interested in the stability of certain equilibria
of DPS and the asymptotic convergence rates near these equilibria under the influence of
exogenous (control) forces. For these purpose useful finite dimensional models must include
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some provisions for modeling system dissipation. Our approach is to introduce an approx-
imate Rayleigh dissipation function defined on a finite dimensional subspace of the state
space for the DPS which approximates a function of the form

4
RO 00) = 4 [ Gt + G + olmes = 00 + a0} d: (4.36)

which can be obtained directly from (4.27) under the above assumptions.

4.4.2 Reduced Order Modeling by FEM and B-splines.

Our approach to finite dimensional modeling is hased on the use of B-splines and the FEM.
Recall that a B-spline (or basis spline) of order k introduces an approximation to the appro-
priate distributed parameter of the form,

Nik-1
n(zt)x > B(t)BE(2) (4.37)
i=0

where .V i1s the number of spline sections (finite elements). The B-splines of increasing order

are defined recursively as

Bf(z) = |———| Bf7'(z) + | —=E—| Bi (=) (4.38)
Sitk T Sitk+1 — Zitl
with the order 0 spline defined with continuity from the left;
o, . J L iz <z<aiy
BY(z) = { o e . (4.39)

The ‘coefhicient’ functions 7;(¢) are to be eliminated by application of certain interpolation
conditions at the knots together with the geometric boundary conditions.

Remark: For discretization of the system Lagrangian (4.31) and the Rayleigh dissipation
(4.36) we see that order 1 B-splines (i.e. linear splines) are all that is required. This is not
obvious if one attempts to discretize the DPS model (4.32)-(4.35).

The required interpolation conditions are given at N uniformly spaced knots on the
spatial interval ¢ < = < ¢;

N - ¢

(%) = ;mB;_l(N) (4.40)
N ) . ¢

n(2%) = ;771'3.'—1(2N)

N
r]([) - Z ﬁiBiI_l(l)
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together with the geometric boundary condition
Nﬂ
n(0) = >_4Bi_,(0). (4.41)
1=0

Let g = n(kL/N) for k =0,1,..., N, and denote

T . ?0
_— . . ] . m
77 . l 7’ - ( nN ) ) 77 -

NN Ain

Then we can write the N + 1 interpolation conditions in matrix form as
7= Mn, (4.42)

where

M = : , (4.43)

B(z) = : . (4.44)

B}V—l(:)

Now we use (4.42) to eliminate 5 from (4.37) to obtain,

n(z,t) ~ BT(z)M'j =My, M, ( g )
= BT(z)M,i(t) (4.45)
Similarly we obtain an approximation to the rotational generalized coordinate as
8(z,t) ~ BT (=) M. 0(t). (4.46)
In the sequel we use the notation
&7(z) := BT ()M, (4.47)

a 1x N array. We note that the N-vectors 7j and @ represent the spatial solutions at the knots
and satisfy the interpolation conditions. The spline is continuous up to its first derivatives.

For this simple model the interpolation conditions and geometric boundary conditions
result in a simple relation for the elements of ® since

0
M=1": In
1 0...0
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so that
. 0...0
o]
thus
#7(2) = [Bi(=), Bi(z)...., By_i(=)]. (4.48)

Now using (4.48) together with (4.45) and (4.46) we can approximate the System Kinetic
Energy;

T = Tﬂgid%-Tﬂer, (4.49)
Trfgid = ;‘Ibwbz (450)
~ 15T = 1 2 T = 1,57 = 1._T ] T g5
Tree =~ 17 Nofj + No,wy +wp Ny, 71 + twi” Noif + 18 Neb + wo N, o6 (4.51)
where
[4
N, = /pAq)(:)CI)T(z)d: (4.52)
0
{
N, = /(;2pA+p1) : (4.53)
0
T BT (Y I~
Ni,= = [ pAs®7(z)d: (4.54)
4
Ny = pl®(=)8T(z) d: (4.55)
{
NT, = /me(:)d:, (4.56)
the System Potential Energy
Vox 10T Kof + 17T Koy + 717 Kngf, (4.57)
where
[4
K, = /nGACDz(:)@:T(z)d:, (4.58)
0
I4
Ko = /{EI<I>:(z)<I>zT(:)+K,GA<I>(:)<I>T(:)} dz, (4.59)
0
I3
Koo = —/ kGAD.(2)8T(z) d=, (4.60)
0
and System Dissipation Function
=T o =T = T =
R~ 17 Byij+ 10 Bsf + 17 Byef, (4.61)
where
[4
B, = A {018(2)87(2) + (3®.(2)®1 (2)} d=, (4.62)
[4
By = | {(C2 + G)B(2)®T(2) + C4®:(2)D] (=)} d=, (4.63)
14
B, = —/0 (3. ()BT (z) d=. (4.64)
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The parameters (;. (; represent external dissipation (e.g. viscous damping) and (3, (s model
infernal (e.g. material) dissipation [BK89].

Solving the Lagrange's equations in terms of the finite dimensional generalized coordi-
nates;

S e =Sl 2R = @y,

. R = 0, (4.65)
d 0T O(T-V) OR
T t+t—= = 0,
AT a6 9
gives the finite dimensional model evolution equations,
(M, + 7T Nyiils + N ,,ﬁ +NT 09 + WAL Nyij = T, (4.66)
Noii + &y Noym — Wi N, i+ Ko7 + K60 + By + B,,g(') =0, (4.67)
Ngf + Wy Ny, + Ko + 1&'3;77 + Byf + B,f;gﬁ =0, (4.68)

where the effective rigid body inertia for the undeformed elastic appendage state is
M,=1Iy+N,,.

To compute the coefficients of the resulting reduced order model equations in terms of
the DPS physical model parameters we must evaluate the integrals in (4.52)-(4.56), (4.58)-
(4.60), and (4.62)-(4.64). For initial simulation studies we assume the elastic appendage
is a uniform beam and take pl,pA,EI,xGA constant over = € [0,¢]. Later this will be
modified to model the spatial variation in cross section and moment of inertia associated
with a typical pyramidal shaped secondary mirror support structure for typical laser beam
expander for a space based laser.

Under these assumptions we can obtain an N x N matrix

. ¢

N :/ ®(2)d7(z) d=
0

with elements of the form

(V);; = /B (:)B!_y(s)dz, forij=1,...N.

A straightforward computation® obtains the tridiagonal structure of N with elements.
g p g

YE), fori=j=N
2 l . .
- (%), fort=j<N
. — ¢ 3\N
0, else

“See Appendix B for details.
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I Similarly, we obtain the N x N tridiagonal matrices
l N = i ®.(z)8T(z) dz, (4.70)
- t
ko= /0 b.(2)7(2) d=, (4.71)
l with elements given by
(%), fori=j=N
- 20Y), fori=j< N .
N'l;; = :
I [N —(§). fori=j+1 (4.72)
0 else
I 0, fori=j
- L fori=j+1
I. _ 29 L
l {R ]U" _%‘ fOtiZj—l . (4(3)
0, else
l With these relations we can express the model coefficient matrices as follows:
N, = pAN
l Ny = pIN
K, = kGAN'
Ky = EIN'+kGAN
. Ku = —rGAK'
B, = (N +GN
| Bo = (Cot GV 4 GV
By = —(K
' Similarly the 1 x N matrices
¢
T BT () A -
l N,, = pA A =% (2) d=, (4.74)
¢
NI, = p[/o &7 (2) d=. (4.75)
l can be reduced to the form
¢ ¢ ( ¢
NT = e — T
I Hane pI[N’N’ 'N’2N]’ (4.76)
v, _J pA(L+)(5)P fori=1,...,N-1 o
| Nl = { pA(EPE =Y, fori=N | (417
Finally, we obtain by direct integration of (4.53) under the above assumptions that
i .
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5 Normal Forms, Decoupling and Partial Linearization

5.1 Partial Linearization and Stabilization of Nonlinear Systems

Techniques for stabilization of nonlinear systems via feedback control are still very limited
and tend to be tailored to specific situations. Among the most promising general approaches
are based on global linearization by Eract Feedback Linearization (EFL) [HSM83, KC87].
The methods are based on earlier work of Krener {Kre73] and Brockett [Bro78] which demon-
strate that a large class of nonlinear dynamical systems can be exactly (i.e. globally lin-
earized) by a combination of nonlinear transformation of the state coordinates and nonlin-
ear state feedback. More recently the connection between these methods and the idea of
input-output (or partial) feedback linearization (PFL) by construction of a system inverse
[Hir79] has been articulated in a series of papers by Byrnes and Isidori [BI85, BI&4]. These
connections have engendered a series of design methods with representative results for spe-
cific applications by Kravaris and Chung [KC87] and Fernandez and Hetrick [FH87]. In this
section we will summarize these results and then proceed to develop the method for the case
of multibody systems from the perspective of Lagrangian mechanics.

Partial linearization derives directly from the Byrnes-Isidori normal form for nonlinear
systems. The essentials of the approach are most easily developed for single-input, single
output systems and we will present the approach in that context. The theory for extending
these results for multi-input. multi-output problems is now complete and references are
included.

('onsider a nonlinear dynamical system in the form,

r = flz)+g(z)u (5.1)
y = h(z) (5.2)

where f, g are smooth ("™ vector fields on R"™ and h is a smooth function mapping R" — .
Now if we differentiate (5.2) we obtain

dh
i = 5-(fx) + gz ). (53)

In the case that the scalar coefficient of u (viz. gfg(a:)) is zero we can differentiate again until
a nonzero control coefficient appears. The number of required differentiations is fundamental
system invariant which plays a role in constructing system inverse and therefore in partial
linearization. The Byrnes-Isidori analysis shows that this integer number is analogous to the
relative degree for a linear system [BI84].

The above construction can be made precise using the notation of differential geometry
which has found application in analytical mechanics [Arn78]. We will need only the notion
of Lie derivative and Lie bracket. The Lie (directional) derivative of the scalar function h
with respect to the vector field f is

_ Ok
O

Ly(h) = (dh. f) f(zx). (5.4)




SE!-88-10-15-WB 21

Since the above operation results in a scalar function on R", higher order derivatives can be
successively defined

L5(h) = Ly(L57 (k) = (dLE7H(R), £). (5.5)

Then we can write {(5.3) as

y = (dh f) + (dh, g)u
= Ly(h) + Ly(h)u. (5.6)

If L,(h) = 0 then we differentiate again to obtain

g = (dLg(h). f) + (dLs(h).g)u
= L3(h)+ Lo(Ls(h))u. (5.7)

I LY Y (h)) =0fork =1...., r — 1. but L,(L7'(h)) # 0 then the process terminates
AR g\Ly

with
dy

P

The system (5.8) can be effectively inverted by introducing a feedback transformation of the

Ly(h) + Ly(L} 7 (h))u. (5.8)

form

1
Lo(Ly ' (R))

which results in an effective input-output system from v — y given by

u =

v — Lj(h) (5.9)

d"y B
dtr

v,

a linear system.
The integer r > 0 is called the relative degree of the nonlinear system (5.1)-(5.2). Note
that if we define new state coordinates = € R" as

ze= LYY h), k=1, r (5.10)

then the nonlinear system (5.8), as obtained from the previous procedure, can be written in
the form

0 ]
001 0
=100 0 1 z 4+ : , (5.11)
00 0 0 0
af(z) + p(z)u
where
a(z) = Ly(k)., plz) = Le(L'(R)). (5.12)

More generally, using the new coordinates > (5.10) and introducing a nonlinear feedback
control of the form

g = otz (5.13)

plz)
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where 1
a(x) =S 3cLi(h) + Ly(h), (5.14)
k=0
plz) = Lg(L1(R)). (5.15)
with 3 for & = 0.....r — 1 real positive coeflicients then the equations (5.6)-(5.7) can be

written in ‘reduced’ form;

0 1 0o ... 0 0
‘ 0 0 1 . D 0
: = . e B S (5.16)
0 0 0 " 0 :
—‘(30 —/51 —dg . —"dr—l 1
y = (L0.....0:. (5.17)

Nonlinear System Transmission Zeros Note that the process leading to (5.16)-(5.17)
provides an equivalent state space realization for the input-output map of McMillan degree
strictly less than n (the dimension of the original state space model (5.1)-(5.2)) by decoupling
a portion of the system dynamics from the output response. This is depicted in Figure 5.1.
Thus the new state coordinates = are a 'partial’ state for the system. Thus stabilization of
{5.18)~(5.17) cannot guarantee stabilization of the full state model (5.1)-(5.2).

Byrnes and Isidori [BI85] describe the above construction leading to a system normal
form in the form (5.16)-(5.17) from which complete stability results can be obtained. The
main result provides the existence of a transformation of coordinates = — (£, z), with the
state partition in the new coordinates £ € 77", = € R" so that the full state representation
in the new coordinates is in normal form;

¢ = F(£:) (5.18)
. 0 Iy ]_, |0 i )
: = [0 ) ]~+[1][ﬁ(£.~)+r(£.~)u]- (5.19)

where 3(€.z) = a(x(€,z)) and (£, 2) = p(z(€, z)). Thus we can define zero dynamics of the
original system (5.1)-(5.2) as the autonomous system

€ = F(£,0). (5.20)

Partial Linearization for Lagrangian Systems Despite the apparent simplicity of de-
termining the zero dynamics from the normal form as above it is, however, quite complex to
compute the complete transformation leading to the full state normal form as given above.
One approach (if possible) is to obtain the full state exact linearizing transformation via the
procedure given by Hunt, Su, and Meyer [HSM83] which requires the solution of a set of si-
multaneous partial differential equations. However, in many special cases the zero dynamics
as well as the required transformations for partial linearizing control can be obtained more
directly. In the sequel we discuss the required constructions for Lagrangian systems.
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(‘onsider the case of a square Lagrangian system with inputs 7 € ®™ and outputs y € R™.
Suppose that the n generalized coordinates can be partitioned into components ¢; € ®™ and
g2 = R"™" so that the equations of motion take the form

d AL oL
i i et (5.21)
4oL _ oL _, (5.22)
dt 9 dg2 '

y = hlqq2) (5.23)

Assume that the origin is an equilibrium point with = = 0, £(0,0) = 0. and that the Jacobian
Jh:3q, is nonsingular on some neighborhood of the origin. Furthermore, we assume that
the Lagrangian i1s a positive definite quadratic form in the generalized velocities. Then the
input-output map (r — y) has relative degree 2 (locally), a PLF control exists and the
zero dynamics may be computed by a relatively simple coordinate transformation applied to
(5.21)-(5.23).
In order to demonstrate these properties we introduce a change of coordinates (q;.qy) —
(y.n) via the relations
y=h(q,q), w=gq (5.24)

Note that the assumption det 3h/9q; # 0 at the origin assures that this is a valid local
coordinates transformation and the inverse relations can be given as

n=g(y,u), g =mu (5.25)

Since any “point” transformation preserves the Lagrangian structure of the equations, in the
new coordinates we can write the variational problem in the form

d 0L oL .
— - — =T ) 52
& oy ey v (5.26)
d 8L oL . _
750 9a - em (5.27)
where .
Ly, y.u, ) = L(q1. q1. 92, %)lql:g(y,u),qz:u (5.28)
and ; .
- Jdg . dg
= |5 . u = | &5 . 52
Ly [ay] r [Bu] (5.29)
Equations (5.26)-(5.27) reduce to the form
Jj+ Nii+ Ky(y,g.u,u) = T,r. (5.30)
NTy + Juit + Koy, gow, i) = Tyr (5.31)

Let us define the partitioned matrices £,. 5., ¢,, ®,, via the relations

- - -1 -
pX J, N K
v — v . L 5
( Ly ) - [ NT J"] ( I\-u ) (5.32)
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and ) .
®,\ | J, N r,
<<I>u>_[NT J;} (r) (5.33)
Note the choice of control
T =&, {5, +v} (5.34)
reduces (5.30)-(5.31) to
y=v (5.35)

NT(y )i + July.w)ii + K(y g i) = Tuly.u) @5 (g u){Sy(y. 1) + v} (5.36)

where we have explicitly displayed the dependence of the model parameters on the generalized
coordinates. Equation (5.35) provides the linearized input-output dynamics and the zero
dynamics are obtained from (5.36) upon setting y(¢) = 0, which implies y = 0,7 = 0, and
v = 0. Thus, we obtain the zero dynamics in the form

Ju(0,0)it + K(0,0,1,%) — Tu(0,1)8;1(0, «)Sy(0, u) = 0 (5.37)

which represents an autonomous nonlinear dynamical system in the state coordinates u, u.
We say the system is locally minimum phase if the origin in the (u, ) coordinates is a
stable equilthrium for (5.37). If the system is minimum phase then selecting the control v
to stabilize the origin of (5.35) guarantees stability of the origin of the dynamical system
(5.21)-(5.23). Thus the computational complexity of obtaining the zero dynamics depends
ov the complexity of the required inverse relation g in (5.25).

In the next section we indicate the importance of this approach to nonlinear control
system design for rapid reorientation (slewing) of a flexible space structure.

6 Rapid Slewing Control for Flexible Space Structures

A primary measure of system performance for an SBL weapon system is its retargeting
envelope consisting of achievable changes in LOS angle and required minimum slewing time
for a given maximum torque capability. For system torque sizing a time-optimal control
maneuver is usually assumed. Since the ideal, time-optimal acceleration waveform is a
discontinuous, bang-bang control, achievable performance is typically limited by actuator
slew rate limiting. For precision optical systems, elastic interactions from spacecraft and
optical system support structure may limit achievable slewing times and retargeting angles
well before actuator slew rate limiting becomes a factor. Structural excitation will ultimately
limit fine pointing precision and optical component alignment and will increase effective
system slew times.

In this section we describe the application of PFL and decoupling control for rapid
slewing of a flexible space structure. We consider slewing of the system principal LOS while
decoupling the system elastic response. Our benchmark problem-—as described in a previous
section—is motivated by the elastic interactions due to structural deformation in a metering
truss of a typical optical beam expander for a SBL system. Initially, we consider LOS defined
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in terms of principal body attitude and consider the limits of achievable performance. Next
we refine the definition of optical LOS to include relative alignment of optical components
subject to structural deformation dynamics. We indicate how to utilize available optical
steering mirror components to compensate for structural interaction contributing to a well
defined system LOS. Simulation results for a simple planar dynamical model are provided
based on the finite element model developed in a previous section and using available system
parameters for a typical SBL benchmark.

6.1 Slewing Control for Principal Body LOS

To illustrate the application of nonlinear PFL we focus on the simple planar model for slewing
developed in section 3.4 and given by equations (4.32)-(4.35). Clonsider a typical optical train
for a laser beam expander as shown in Figure 6.1. Various options for a support structure for
the secondary mirror (metering truss) are considered in the system study [Lea87]. Clearly,
flexure response of the metering truss is an issue of dominant concern affecting the optical
system align:nent including focusing and LOS pointing. The model equations (4.32)-(4.35)
can be readily adapted to characterize the principal dynamics of this system under the
assumption of planar motion and assuming the metering truss is the primary source of
structural flexure affecting LOS pointing.

Initially. we approximate the elastic deformation of the metering truss using a uniform
beam model and take the structural parameters E, I, p, 4, kG as constant over the length of
the truss 0 < z < ¢. For our simple planar slewing model we take as a model for the system
effective optical LOS as 6;05. given by

fros = 0, + Aros (6.1)

where #, is the principal body attitude in the r x : plane and Arps is a relative LOS
deflection due to deformation of the metering truss and the resulting dynamic misalignment
of the secondary mirror. For the case of planar motion we can model the relative LOS as a
perturbation of the body LOS resulting from angular deformation at the secondary mirror
of the form.

Aros = 2{n.() +8(0)}. (6.2)

This simple model is summarized in Figure 6.2.

For simulation purposes we introduced a finite element model for this system in sec-
tion 3.3.1 given by equations (4.66)-(4.68). Our initial considerations for rapid slewing are
focused on attitude reorientation of the spacecraft principal body. Thus we define the system
output as y = 6.

To obtain the PFL transformation we proceed as for Lagrangian systems. In this case the
required change of coordinates is trivial since (4.66)-(4.68) are already in the form (5.30)-
(5.31) with respect to the system output y = 6, and v = (7.0)7. Thus the linearizing
feedback torque can be given immediately from (5.34).

To illustrate the simplicity of the computations, we identify the model equations (4.66)-
(4.68) in the form

Jo(t)by+ NTie + Ky = T, (6.3)
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Figure 6.2: Planar slewing model for optical beam expander
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Myii+ N6+ K, = 0 (6.4)

where

Jo = M, + 7T N,j

N, 0 N,
A/ = Vn — wyn
t [ 0 AVg ] ' N [ 1\/1”"3 ]

Ky = war_]TN,,ﬁ.

o [(En = @iNy) Ko (’?)4 B, B (:
“ [\'3;; Iq 0 I B,{e Bg

The PFL torque is

B-<J
S

Ty = Ko + M (M2 Ky + v) (6.5)

“[ [ 1\.[11 Zf’[lz ] [ Jg 1VT J-
M o= - - =

where

M 21 A[ 29 N 1"[_,

and v i1s the new, synthetic control input. The nonlinear feedback transformation linearizes
the input-output map from v — y and decouples the u dynamics so that;

g:p'

The resulting system is stable if and only if the decoupled, zero dynamics are stable. In
this case, the zero dynamics are readily obtained from (6.3) by letting # — 0, § —0,0—0;

M+ K, =0,

which is the (linear) cantilevered dynamics of the flexible appendage. Clearly, this is (practi-
cally) stable as long as sufficient damping (either active or passive) is present in the structure.

Design of time-optimal slewing of the decoupled, linear, 6, dynamics is now straightfor-
ward and practical implementation is discussed next.

Pseudo-Time Optimal Control of Ideal Rigid Body Inertia. Time-optimal slewing
of a pure inertia subject to limited acceleration consists of a bang-bang acceleration with
constant acceleration up to a switching instant at which time a constant deceleration is
applied. Implementation of time-optimal control for a pure inertia involves determination of
a switching condition for the ideal, bang-bang acceleration (control). For feedback control
we would like to obtain a switching surface in the phase plane (9,9). The ideal bang-bang
control is discontinuous with respect to this switching surface.

Trajectories in the phase plane of (9,65) for constant acceleration can be obtained from
the flow of

8 = Aas

with A, a constant. The required switching condition is defined in terms of a switch-
ing surface given by the phase-plane trajectory approaching the origin which satisfies the

condition; _
Qmarf £ 6% =0
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with sign depending on the sign of amqez. For e, > 0 the required ideal switching surface
1s given by . o
8(0,0) = 2amq8 + 616 = 0,

and the ideal. time-optimal acceleration i1s a switching law of the form,
a = —sgn{2amq0 + 4]1}.

Practical application of the above control is limited by the requirement for instantaneous
torque (acceleration) switching and by he tendency for a feedback implementation of the
above form to limit cycle in the region near the phase plane origin.

A practical. pseudo-time-optimal control can be implemented using feedback by replacing
the requirement for instantaneous switching with a direct limit on acceleration slewing rate.
This is achieved by replacing the sgn function with a saturation function of the form,

QXmazy € > QAmaz
sat(e) = €, lel S Amar
—Qmaz,s € < —Qmar

The pseudo-time-optimal control can then be implemented in the form,

a = —sat{g1(f(w) + 20tmaz0)} (6.6)

where w = 8. the nonlinear function f(w) is a piecewise continuous approximation to the
ideal quadratic switching surface

W+ g/d. w > ga2

flw) = gow, |w| < g2/2
~w? — g4, w< —gy/2

The constant gain g, is chosen to represent slew rate limiting in the torque actuator and g,
is chosen to provide stable (damped) pointing response.

Given the nonlinear PFL transformation the pseudo-time-optimal control can now be
implemented directly for principal body LOS slewing by setting v = a in (6.5) with a given
in (6.6).

6.2 Simulation Results for Principal Body LOS Slewing

The finite dimensional simulation model for planar slewing is now used to illustrate the be-
havior of the combined nonlinear PFL and pseudo-timme-optimal control given by (6.5), (6.6)
and v = a. The FEM model is described in Section 3.4.2 and is based on physical parameters
given in lable 6.1 which are loosely taken from the system study [Lea87]. The elastic and
shear moduli are chosen to roughly approximate the reported first modal frequency of the
metering truss obtained from the structural analysis of the benchmark SBL system [Lea87].

The internal dissipation parameters, (3 ((4) were chosen, somewhat arbitrarily, as small frac-
tions (2%) of the elastic (resp. shear) modulus. The external damping coefficients (;,(;
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\
Parameter Value | Description
1, 1.325E406 | principal body moment of inertia
4 15. | length of appendage
p 1520. | mass density of appendage
A 0.01298 | cross section area of appendage
E 1.6E+07 | appendage elasticity modulus
kG 6.4E+06 | appendage shear modulus
I 693.11 | appendage area moment
C1s G2 0.0 | external dissipation coefficient
(3 1661.44 | internal dissipation coeflicient
(4 0.222E+409 | internal dissipation coefficient

Table 6.1: Physical Parameters for Simulation Model (in MKS units)

[ mode [ frequency (r/s) JL mode Iftequency (r/sﬂ

1 6.8167991 || 7 64.716684
2 19.996775 || 8 73.055738
3 20.941475 1| 9 87.662067
4 36.418957 | 10 91.188281
5 41.217664 || 11 118.80496
6 54.057492 || 12 139.11817

Table 6.2: Undamped Frequencies of Cantilevered Appendage Dynamics
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are set to zero to simulate space environment. The resulting undamped frequencies of the
cantilevered appendage dynamics are given in Table 6.2.

The resulting response in principal body LOS 8, for N = 5 finite elements is shown in
Figure 6.3 for a 30 degree slew. The commanded ideal LOS acceleration a obtained from
(6.6) with # = 05, w = ws 1s shown in Figure 6.4. The required linearizing torque T, obtained
from (6.5) 1s shown in Figure 6.5. Clearly, substantial additional torque capability is needed
to implement the exact PFL control and decouple the effect of the flexible appendage on the
rigid body attitude. A principal focus of the FY89 project will be to investigate options for
approximating the PFL torque so that both torque authority and torque bandwidth can be
relaxed. See the appendix on Slew Induced Deformation Shaping.

For optical LOS slewing the resulting relative LOS Arps given in (6.2) will also be
of concern. Figure 6.6 displays the response in Apps as obtained in (6.2) for the simple
planar slewing model. Clearly, excessive deformation of the secondary mirror orientation will
degrade the optical LOS after the completion of the primary body LOS slewing maneuver.
In the next section we describe a method for decoupling and PFL for the effective optical
LOS in addition to the primary body attitude by introducing additional control capability.

6.3 Optical LOS Slewing using Steering Mirror Compensation for Structural
Deformation.

For rapid slewing and precision pointing of space-based optical systems and essential consid-
eration is structural interaction with the optical train alignment and resulting degradation
of system performance. With respect to the benchmark model of the laser beam expander
we focus on the relative alignment of the primary and secondary mirror due to elastic defor-
mation of the metering truss. Throughout this study we have assumed that the introduction
of active structural control on the metering truss is precluded by considerations of optical
path occlusion from expanded cross section of the truss members with additional control
components. The system study [Lea87] considers various options for truss configurations
and strut material but does not consider active control of the truss.

[t is easy to show that PFL of the simple model of effective system optical LOS given in
(6.1) using the rigid body torque T} only is not feasible because the system response from T,
to Aros is nonminimum phase. This is an essential characteristic of distributed parameter
models for structural dynamics with one or more spatial dimensions. As is well known for
the case of linear models for such systems the response from generalized force control to
position output will be minimum phase only if the point of control and observation are
spatially colocated. However, in this case additional control degrees of freedom are available
using the optical system components. Referring to Figure 6.1 the optical steering mirrors
are included to provide fine pointing adjustment of the optical LOS.

(‘onsider a simple model of the effect of relative angular motion of the steering mirror,
f.,. on the system relative LOS (measured in the primary body fixed frame) given by,

Aros = 2{n.(€) + 6()} — 26, (6.7)

We assume that the steering mirror is mounted on the primary body. Its dynamic interaction
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with the body is given by the modified equations of motion (for the reduced order model);

(Mo, + 7T Noily + Iniom + NI 5+ NI o8 + wyiT N = T, (6.8)
Im(“""b - wm) = va (69)
Noii + Wy Nuyn — Wi Npij + I, + K98 + B,ij + Bef = 0, (6.10)
Nob + WyN,,6 + Kof + K17 + Bef + BL7j = 0, (6.11)

where [, is the steering mirror inertia and T}, is the control torque applied to the steering
mirror in the body frame. We have assumed a frictionless mount.

We now show that the two-input, two-output system from (7%, T, ) — (fs,8,,) is relative
degree 2. minimum phase, and can be linearized by PFL transformation. Furthermore, the
resulting PFL response is decoupled in the sense that after the introduction of nonlinear
feedback the response from the new synthetic inputs (vy,v5) — (8.6 ) is of the form,

9b =

(')m = Vq.

To compute the 2-input/2-output PFL torques we identify a transformation of the gen-
eralized coordinates;

i = 6 (6.12)
y2 = 2{n:(6) +0(()} — 26,,. (6.13)

From the finite element model described in Section 3.4.2 we can see using B-splines that the
local slope is obtained as,

9%7(:)
Oz

) =—(F)w(t), (6.14)
==t

HERI IR

so that we obtain the relative LOS for the finite element model in the form,

Aros = 2{[0,....0, ()7 +[0....,0,1)8} — 26,,,
= &f+E0— 20, (6.15)

From the above we can rewrite the modified system equations of motion in terms of the
new generalized coordinates y;,y; and using the FEM LOS approximation as,

[M, + 7T Nyilgy = tmgis + (NI, + Incl)ii + (N5 g + Incs )0

e

+ 24171 Noij = T, (6.16)
Imiiy + Hmfiy — Inlii — In@l 6 = T, (6.17)
NoB + 51 Nuyn = G2, + Koii + Fogf + Bfi + Brgf = 0, (6.18)
Neb + 1 Noyo + Ko + KLa+ Bef + BLi = 0. (6.19)
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Then the required decoupling torques T;,T,, can be obtained directly from the above
equations in the form

T, = (NI, + I.ellii + (NI + Iacl 8 + 2410777 Nyij
+ [M, + GT Nyilay — L nas, (6.20)
T = —In@lij = 120 + Imoq + tHna. (6.21)

The required slewing controls can now be generated for the decoupled dynamics of the
principal body LOS y; = A, and relative (body frame) LOS, y» = A;os exactly as before.

Remark. In this form it is clear that the PFL obtains the decoupled, linearized relations
by exact cancelation of terms. It is also clear that potential for relatively simple implemen-
tation using accelerometers may offer advantages in this case since the P¥L -ontrol is then
insensitive to stiffness and damping properties of the elastic appendage. A goal of the FY89
effort will be to investigate the potential for the use of simplified and reliable PFL imple-
mentation using low cost, solid state accelerometers at numerous locations on the structure.
We note that conclusive results in this area can be obtained only after a dynamic model
of the accelerometer i1s included in the analysis and control design. The potential for such
control implementation is important for several reasons not the least of which is the evolving
technology for structural components with embedded solid state sensors and actuators (e.g.
using piezoelectrics) {De86].

6.4 Simulation Results for Optical LOS Slewing

The above PFL decoupling control (6.20)-(6.21) was simulated for the ideal case with the
addition of the steering mirror dynamics as given in (6.16)—(6.19). The resulting response
in the principal body LOS 6, and the relative (body frame) LOS, Aros. for a 30 degree
slew are shown in Figure 6.7. The required linearizing torques T, and T,, are shown in
Figure 6.9-6.10. The ideal commanded acceleration for the rigid body slew a; is identical to
that obtained for the case of principal body slewing since the slewing controls are decoupled
by the introduction of PFL torques. A measure of appendage deformation resulting from the
slew can be obtained by examining the response of the steering mirror 6,, (see Figure 6.8)
and the deformation at the end of the appendage (at the secondary mirror) ny,0x (see
Figure 6.11). In this framework requirements for stifiness and damping of the metering truss
can be determined based on structural limits of the secondary mirror deflection and angular
limits of the steering mirror without concern for effective dynamic pointing precision.

7 Survey of Methods in Robust Nonlinear Control

7.1 Importance of Robust Control Design for Nonlinear Slewing Control

Recently considerable research effort has been expended in developing new methods for
robust control system design. The goal of these methods has been to obtain quantifiable
limits on the stability and performance of a control system with internal dynamics (of both
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the plant and the controller) which may vary in specific, quantifiable ways either due to
changes in time or initial model imprecision. The importance of such methods can not be
underestimated in practical applications. The primary emphasis in the engineering literature
of the past 10 years on the robust control problem is the use of linear plant models and linear
control law dynamics.

Early results of Nyquist [Nyq32] and the Bode [Bod45] provided an analytic basis for
the fundamental engineering tradeoff between dynamic stability and a scalar loop-gain pa-
rameter of a single closed loop feedback control. In the early 1970’s the focus of research
turned to the robust stability of multiloop feedback control utilizing various extensions of
Nyquist's theorems as pioneered by Rosenbrock [Ros74. Ros72]. Recognizing the critical
need to predict stability of feedback control with certain nonlinear effects the engineering
community developed various ways to bound certain nonlinear effects with linear systems
and obtain (albeit somewhat conservative) stability results. A central contribution in this
area is the work of Zames [Zam63] which provides the basis for the cornerstone of robust
linear control theory known as the small gain theorem. Using this theorem results can be
obtained for the class of sector bounded nonlinearities and have more recently been extended
to multiloop control systems by using singular value bounds (i.e., L» norm) of the transfer
function (matrix) frequency response. An essential feature of such methods for design is that
the design engineer must have a model for the overall nonlinear system where the nonlinear-
ities are memoryless and sector bounded and interact with a model of the system (linear)
dynamics through a fixed number of feedback loops. Thus these methods support design of
linear control systems for plants which may contain certain isolated nonlinear effects. In this
study we have considered a more direct and comprehensive approach to nonlinear control
system design in which the system nonlinear dynamics are utilized to effectively ‘linearize’
certain aspects of the system response.

Our main interest in the robust control problem for slewing control of flexible structures
stems from:

1. Concern for practical application of advanced nonlinear control system design methods
including both EFL and PFL for the class of models considered for slewing of SBL type
systems. Such concerns include:

(a) predicting performance limits with model dynamics based on imprecisely known
parameters

(b) predicting performance limits with reduced order model dynamics.

(c) predicting performance in the presence of variation of system dynamics due to
environmental changes effecting model parameters,

(d) predicting performance in the presence of variation of system dynamics due to
parasitic dynamics unknown at design time.

2. C'oncern for design of laboratory experiments to demonstrate advanced nonlinear con-
trol laws for rapid slewing control of flexible structures. Such concerns include:

(a) predicting performance with modeling imprecision due to both parasitic dynamics
and parametric variation,




SEI-88-10-15-WB 40

() assuring stable and reliable operation of experiments including stable “tune up”
procedures for testing high performance, high gain control laws.

[n this section we will briefly review some available results in robust control system design
for nonlinear systems which we believe will be important tools to address the above practical
concerns. It is important to emphasize that the crucial issue in robust control of nonlinear
slewing of flexible structures will be the incorporation of concerns for the parasitic (high
frequency) dynamic uncertainty which is intrinsic in the distributed parameter dynamics of
the flexible structure and the nonlinear (and parametric) uncertainty due to the dominance
of certain nonlinear effects (such as Cloriolis and gyroscopic accelerations) which arise because
of the dynamic requirements of rapid slewing.

7.1.1 Classification of Robust Control Results and Assumptions

It is sometimes useful in surveying a literature as diverse as robust control design has become
to attempt to classify results according to types of assumptions placed on the system dynamic
maodel. The diversity available reflects an intense area of research where—very roughly put—
the goal 1s to obtain the least conservative characterization of conditions for robust stability
and performance with the least restrictive assumptions on the plant dynamics. Thus we can
classify available results according to assumptions on model uncertainty as:

e parametric versus nonparametric (or parsitic),

e structured versus nonstructured.

Structured vs. Nonstructured Uncertainty. We indicate model uncertainty as struc-
tured if the uncertainty is characterized as being localized in the system dynamics (i.e., it
effects a structured portion of the systemm model only) and unstructured otherwise.

Parametric versus nonparametric uncertainties. Parmetric models for dynamic un-
certainly include cases where both physical and artifical model parameters are allowed to
vary over specific sets. Such plant model variation does not incorporate changes in model
order in a natural way. Nonparametric (or parasitic) model uncertainty attempts to char-
acterize model variation which can incorporate changes in the effective dynamic degrees of
freedom. We remark that the methods of singular perturbation analysis decribed for example
in Kokotovic [[(ok85] attempt to reconcile these two views of model uncertainty. As such we
expect these method to play an important role in robust control of rapid slewing of flexible
structures. (See Appendix C for preliminary results on application of these ideas to design
of control for a flexible multibody system.)

7.2 Robust Stability of Linear Systems

By way of introduction, motivation, and comparison with availahle methods for nonlinear
systems, we briefly review the general results for robust stabilization of linear systems.
The two common linear multivariable plant models used in literature are:
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e State-variable models generally written in the form:

t=dz+ By, y=Cz+ Du

e Transfer-function matrix models denoted G(s) where G(s) is a p x ¢ matrix with entries
made up of rational functions in the complex Laplace transforin variable s.

Each one of these plant models requires its own type of uncertainty model. Some of these
uncertainties for state-variable models can be modelled as follows:

Parametric unstructured: Let Az — (4 + §A)z. where §4 is constrained only in norm,
le, || 84 (< a.

Parametric structured: Two examples of model uncertain assumptions in this category

are:

1. Az — (4 + ¥, ¢4z, —1 < ¢ <1 where the parametric uncertainty, represented by
q;. 1s structured by virtue of the structure of the A;.

2. Refering the linear state space model above (A4, B) — (4 + 64(q), B + § B(q)) where ¢
1s assumed to belong to a known compact set. We say § 4 and § B satisfy the structure
matching conditions if:

§4=BD, 6B=BE. (7.1)

For robust stability of linear systems it is often more useful to characterize model uncer-
tainty in terms of the frequency response or transfer function model. Uncertainty in G has
been characterized as:

Multiplicative unstructured nonparametric; eg., G — (I + L)G or G(I + L) where
|L(jw)]] < ln(w). Here, ||L|| denotes the norm of the matrix L.

Additive unstructured nonparametric; e.g.. G — §G, where [[§G]| < l,(w).

Additive/multiplicative structured nonparametric; same as above but only certain
elements of L and 8 are variable.

We remark that using transfer function models for uncertainty one can readily charac-
terize parasitic dynamic uncertainty. This is a central reason for the popularity of frequency
response methods for control system design. Recently the development of control design
methods based on worst case optimization in the Hardy space H™ of transfer functions has
provided a formal design approach for linear systems based on a well defined optimization
criterion which embodies robustness [Zam81].

The vast literature on optimal robust control design is outside the scope of the present
study. It significance for EFL and PFL is a subject which we will study in more detail in
the next year. For now we confine our comments to its potential for addressing the robust
stabilization of the effective linearized system obtained from the nonlinear EFL (or PFL)
compensator (cf. [Spo86)).
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7.2.1 A State Space Approach for Linear Systems

An important approach to robust control system design was obtained by Barmish, Corless,
and Leitmann [BC'L83]. They use Lyapunov-function theory to design robustly stable con-
trollers for linear systems. The main advantage of their method is that, as we will see later, it
can easily be generalized to nonlinear systems. The authors show that if the plant dynamics
are given by:

r=(4+Ad)r+(B+ AB)u (7.2)

and the matching conditions:

AA=BD. AB = BE (7.3)

hold for the plant uncertainty, with || D ||< pp and || E ||< 1. then the state feedback
u = —290 BT Pz will always robustly stabilize System (7.2), provided that the positive scalar
90 1s chosen sufficiently large. The matrix P in the state-feedback control law is given as a
solution of the Lyapunov matrix equation, ATP+ PA = —H, where H is any positive definite
matrix. The matching conditions (7.2) do impose a special structure on the permissible
plant variations. Patel et al [PTS77], and Yedavalli [Yed85] also exploit Lyapunov function
theory to obtain conditions on the A4 matrix in the state-variable plant description for robust
stabilization.

7.3 Robust Stabilization of Nonlinear Systems.

Recent developments in feedback design of nonlinear systems fall into two categories. Results
which are geometric in nature are essentially independent of a coordinate system for the state
space and view the system as a collection of vector fields evolving on a manifold which can
be embedded in a larger Euclidean space. A second body of results are asymptotic in nature
and use Lyapunov and/or singular perturbation techniques.

7.3.1 Geometric methods in nonlinear control.

The inital emphasis in the development of geometrical methods for nonlinear control was to
extend the well known linear theory of Wonham [WonT74] to linear systems which are affine
in the control variable. The methods of EFL and PFL described in this report are examples
of this line of development.

Unfortunately, these geometric techniques present some limitations from the engineering
point of view. One such limitation is that results of a geometric nature are sometimes difficult
to apply in practice because highly accurate models must be available in order to verify that
certain exact conditions of the theory are satisfied. Moreover, since the construction of the
linearizing feedback involves “cancellation™ of certain nonlinearities, it leaves open many
questions regarding sensitivity and robustness of the control implementation. One approach
which has been pursued by several researchers is to use the available freedom in the linear
controller design (once effective linearization has been achieved for a nominal model) to
recover stability robustness [MC80, GMS82|.

It is interesting to note the interpretation given hy Meyer [Mey81] to EFL and its relation
to a trajectory-dependent Taylor series expansion of the nonlinear vector fields. Consider a
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nonlinear system given by,
#t) = f(z) + gleh

To ohtain EFL control we seek transformation of the state and feedback so that the effective
system is in a linear canonical form,

1)1 = Y2,

Yn = 0.

where the transformation is effected by the maps T'(z,u) — y and W(y,v) — u which
effectively invert the transformation to linearized coordinates. If we consider a Taylor series
expansion of the nonlinear system in the neighborhood of a given state trajectory z(¢)—which
we assume 1s valid pointwise on z(¢)—we obtain a linearized model of the form

T = (ap + ayt) + Az + Bu,

where ag.a,. 4. B are constant (at least locally). Under these assumptions Meyer suggests
that the effective T and IV maps can be interpreted as (linear) transformations of the local
nonhomogeneous linear model just obtained to the canonical form via

y=Tz+ co + cit,

and

uw=Wuv+ Ry+ by + byt.

The matrices T, W, R depend on the homogeneous part (A, B) of the local linearized model.
However, the introduction of nonhomegeous part in the effective linear system is nonstandard
and results on robust linear control must be carefully reevaluated in this context.

7.3.2 Asymptotic methods

The second body of results consists of mainly Lyapunov-based techniques to design robustly
stable controllers for the nonlinear system. Roughly speaking, a nonlinear system z = f(z)
is asymptotically stable if there exists a function (Lyapunov function) V'(z) which is positive
for all non-zero z and which has a time-derivative V(z) which is negative for all non-zero r.
Obvionsly. if the inequalities in question are true for all admissible variations in f(z), the
Lyapunov stability theory also provides conditions for robust stabilization. An early paper
on the application of Lyapunov function to robust stabilizaton is the paper of Gutman and
Leitman [GL76]. The monograph of Safonov [Saf80] also contains an extensive discussion of
the application of Lyapunov functions to robust stabilization.

In contrast to geometric methods, asymptotic methods do not rely on transforming the
system into a more convenient canonical form; rather, they consider uncertainty as a class
of bounded perturbations to the state model. The methods often employ effective high-
gain feedback to combat uncertainty and exogenous disturbances. Among such methods are
the so-called Variable Strucure C'ontrol (VSC') methods which were discussed in the previous
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report [BBK88] and the controller structures proposed by Corless and Leitmann [CL81] which
generalizes the design for linear systems described previously. The Corless-Leitmann robust
controller guarantees a form of stabilty called uniform uvltimate boundedness of the state to
an arbitrarily small neighborhood of the origin; and might be termed practical stability. The
type of uncertainty models they consider contain mainly parametric structured uncertainties
satisfying a generalized version of the matching conditions (7.2). The need for these matching
conditions represents one of the main restrictions of robust control methodologies, for both
the linear and nonlinear case. In the next year we will examine the application of these
assumptions for the class of nonlinear models described in this report and investigate the
meaning of the matching conditions for slewing of flexible structures.

7.3.3 Parametric structured uncertainties

Geometric methods. The main geometric results in the literature on the robust stahi-
lization of nonlinear systems with structured uncertainties involve two assumptions which
may restrict application. The first is that the results are restricted to the class of feedback
linearizable systems; i.e.. systems which are exactly linearizable (using EFL) or minimum-
phase systems (using PFL). The second restriction is that the uncertainties which account for
the difference between the true plant and the simplified given model, are assumed to satisfy
the structure mafching conditions. The basic design paradigm is that once the linearizing
change of coordinates and feedback is applied to the uncertain nonlinear model, a perturbed
linear model is obtained. The key point is that the uncertainties on the linear model will
retain the same nice structure of the uncertainties (via matching conditions) on the nonlin-
ear model. The available freedom in the linear system design phase can then be used (as
suggested by Meyer [GMS82] and) as discussed in the previous sections. Spong [Spo86] and
Kravaris [Kra87] follow this same approach and use a similar type of controller. Kravaris’s
result is less restrictive since he assumes only that the system is minimum phase and applies
PFL rather than EFL. (As we have suggested throughout this study PFL is an essential
practical feature of the control problem for rapid slewing of flexible structures.)

For simplicity of presentation we describe Spong’s approach. The true plant is assumed
to be of the form:

z = f(z)+ 1 g:(x)u(t) (7.4)
= flz)+ G{z)u
with the usnal smoothness assumptions on f,g;,...,9,» on R" and f(0) = 0.

Assumption 1: There exists a diffeomorphism T(z) on R™ and nonlinear smooth functions
a(r),3(7) of appropriate dimensions, with 3(x) invertible, such that with the change of
coordinates = = T(x) and nonlinear feedback u = a{z) + 3(z)v, the plant (3) becomes:

:= Az 4+ Bv (7.5)
with (4. B} in Brunovsky canonical form. The design model is:

&= f(z)+ G(z)u (7.6)
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where f, (G are nominal versions of f, G respectively.

Assumption 2 : Let

Aflz) = flz) - f(z)
AG(z) = G(z)- G(z)

denote the mismatch between the plant and the model. We assume there exist smooth
functions D(zx), E(z) on R™ such that the following matching conditions are satisfied:

Af(z) = G(z)D(z),
AG(z) = G(z)E(x).

Assumption 2 combined with Assumption 1 implies that the model (7.5) is also feedback
linearizable with the same change of coordinates T(z) used for the original plant and a
nonlinear feedback © = &(z) + H(z)v to the same canonical linear system (7.5). An example
that satisfies these constraints can be found in mechanics. Two rigid robot manipulators are
in the same orbit under the action of feedback, that is they can both be linearized using the
same change of coordinates = = T(z) and different feedbacks provided that they have the
same number of joints and powered and unpowered joints of the manipulators coincide.

If we apply the linearizing change of coordinates = = T(z) and the nonlinear feedback
« = a(z)+3(z)v to the true plant (7.5), we obtain a perturbed linear system with structured
uncertainties:

= Az + B{v+n(z,v)} (7.7)

where

n(zr) = B(e) {D(x) + E(2)(&(z) + B(2)0)|sor-1n)},
= @(z) + el

The following additional assumptions are made on the nonlinearity 5(z,v);

Assumption 3: There exists a positive constant a < 1 such that for - € R™:

| #(=) 1<

t

e R™:

Assumption 4: There exist positive constants a and b such that for

lé(z)I<a+b] =]
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Design of the v-controller. Several robust controllers can now be introduced:

(i) The first controller proposed is a linear dynamic compensator v(s) = C'(s)z(s). The
multi-loop version of the small gain theorem [DV75] shows that the control signal v(t)
and the “uncertainty” 5 are bounded in L., provided C(s) is designed in such a way as
to satisfy the modelling assumptions (3) and (4) and the stability condition provided
by the small gain theorem. To design such a compensator ('(s), the stable factorization
approach which was developed during recent years by various researchers and given a
exposition in [Vid85], is used.

(i1) The second approach for design focuses on practical stability. One designs a control law
for v that guarantees the uniform ultimate boundedness of the state z(¢) to an arbi-
trarily small neighborhood of the origin. Two state feedback schemes can be designed
using this approach to guarantee stability of the uncertain linear system (7.6) within
the modelling assumptions (7.5) and (7.5). The first one is a saturating nonlinear
controller and the other one is a high gain linear controller. The design methodology
1s based on the second method of Lyapunov.

The controller v is taken as v = Kz 4+ Av where K is chosen so that A + BK is Hurwitz.
The uncertain linear system (7.6) becomes then:

¢ =(A+ BEK)z + B{Av +n(z, Av)} (7.8)

One way to design Av is (following the work of Leitmann [Lei81]) to choose Av as a saturating
nonlinear quantity:

- BTP: . . .
Ap = 1 —PEO g i | BTPx|> € | (7.9)
A BTPz; if || BTP: < e
for some (given) € > 0, p satisfying,
Inll < plzt), (7.10
| Avil < p(z,t), (7.11)

and P, the unique positive definite solution to the Lyapunov equation;
(A+ BK)'P + P(A+ BK)+Q =0.

The idea is that the function 17(z) = zT Pz (which is a Lyapunov function for the linear
system (4 + BK, B)) is a Lyapunov function for the nonlinear system (7.7) provided that
n satisfies (7.9). The uniform ultimate boundedness set can then be made arbitrarily small
by decreasing €. For € = 0, the system is asymptotically stable and the control law (8) is
discontinuous.

Another way to design Av follows from the work of Thorp, Barmish [TB81] and others
on robust linear control. Here we take Av as a strictly linear, but high gain control law;

Av(t) = —yBTP:,

where ¥ > 0 is sufficiently large so that the state z(t) is uniformly ultumately bounded. The
calculation of ¥ and the ultimate boundedness set can be found in [TB81].
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Lyapunov-based methods: As mentioned earlier, most of the results that use Lyapun-
ov-based techniques to design robustly stable controllers for nonlinear systems use either
explicitely or implicitely high gain feedback to combat uncertainties. One of the interesting
results on robust stabilization of nonlinear systems with parametric structured uncertainties
is the controller proposed by Corless and Leitmann (as a generalization of their earlier linear
control methods). The stability concept used is termed “practical stability” and differs
slightly from the traditional Lyapunov stability. Normally Lyapunov arguements are used
in design to guarantee uniform asymptotic stability of an equilibrium state. However, in
practice one is often content with uniform ultimate boundedness to some set in finite time.
The uncertain dynamical system is assumed to be described by the state equation,

&= fla(t).t) + Af(x(t).t) + [B(z(t),t) + AB(x(t), t)]u(t)

where z(f) € R" is the state, u(t) € R™ is the control, and f(z,t),Af(z,t), B(z,t) and
AB(r,t)are matrices of appropriate dimensions which depend on the structure of the system.
Additional conditions may be imposed on how Af and AB structurally enter the state

equations.

Assumption 1: Af and AB satisfy the structure matching conditions; i.e., there are
mappings

h():R"x R — R™and E(.): R* x R — R™*™

such that

Af(z,t) = Bz t)h(z.t)
AB(z.t) = B(z.t)E(z,t) (7.12)

forallz € R" and t € R.
Because of this assumption, all uncertain elements can be “lumped” and the system is
written,

B(t) = fz(t),t) + B(x(t), t)u(t) + B(z(t), t)e(z(t).t). (7.13)

The “nominal”™ system, that is, the system without uncertainty, is described by
= f(z(t),t) + B(z(t). t)u(t).

Based only on the knowledge of the maximum possible value (which may depend on z and
t) of the norm || e(z,¢t) ||, the aim is to find a feedback control u(.) : R* x R — R™ such that
given (7g,tg), a corresponding response z(.) : [to, ) — R" exists, and every such response
enters a neighborhood of z = 0 in finite time and remains within it thereafter. This is
uniform ultimate boundedness. The following additional conditions are also assumed:

Assumption 2: The known functions f, B as well as the unknown function e are contin-
uous functions, and f(0,¢) =0 for all t € R.
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Assumption 3: The norm of the uncertain element is bounded by a known function; that
1s, for all (r.t) € R* x R
| e(z,t) [|< p(z,t)

where the known function p i1s a continuous function.

Assumption 4: Given a compact set £ C R" and a compact interval [a,b] C R, there
exist continuous functions m;(.): [a,b] — R. i = 1.2, such that for all (z,t) € E x [a,b]

| fle )]l < ma(t),
| B(z,t) || p(z.t) <

Assumption 5: The origin, ¢ = 0 is uniformly asymptotically stable for the uncontrolled
nominal system = = f(z(t),t). In particular, there are a C! function (Lyapunov function)
1'(.): R" x K — R, and continuous, strictly increasing functions v,(.): Ry — R;, 1=1,2,3
which satisfy

v(0) = 0, =123
lim v;(r) = oo, 1=1,2

r—

such that for all (z.t) € R* x R

(2 ) < Viz,t) < vl  |])

aVi(zx, ,
% + VTV (2, ) f(2.t) < —7a(]] = |]).

In [C'L81], a class of state feedback controls is proposed. A member of this class, u(.) :
R" x R — R™, is a continuous function such that, for given ¢ > 0,

u(z,t) ——M—p(z‘,t), if || u(z,t)||> e, (7.14)
INGENIR
|z, t) | < plat), if || plet)[[<e (7.15)

where

pwl(z.t) = BTz )V V(z, )p(z. t).

A particular example of such a control is

IER]

w(zr,t) = —tho(z.t) i u(z b} [[> e
) _u:(:.f plx.t) 1f|| ll(I‘t)llgf

It is shown in [C'L81] that a control of the type (7.14)-(7.15) guarantees ultimate boundedness
of all possible system responses within an arbitrarily small neighborhood of the zero state
(by letting ¢ — 0). Furthermore, the set of ultimate boundedness as well as an upper bound
on the time interval required to reach it are given explicitely in terms of the functions +,
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defined above. More specifically, it is shown that a solution z(.) : [te, ;] — R™ z(to) = o,
of the closed loop system:

z(t) = f(z(t).t) + Blz(t). t){u(z(t).t) + e(x(t),t)]
with u(x(t).t) satisfying (7.14)-(7.15), exists and satisfies
[ xo < r = (t) |<d(r). Yte [to.t,]

where

d(r) = { (7' oy2)(R) ifr<R

(17 oy)r) ifr>R
and

R =7;7"(2e).

Furthermore. the solution has a continuation over [tg,~) and for || zo ||< r and given
d > (77" 292)(R) ) )
lz(t) I<d. ¥t > to+ T(d.r)

where )
T(d.r) 0 ifr<R
W r = “Q(f)—‘V](R . D
l ———HR)_ZC ifr>R
and

R = (v  om)(d).

7.3.4 Nonparametric nonstructured uncertainties:

In the case of unstructured but “not too large” nonlinear model/plant mismatch, Kravar-
is [Kra87] follows exactly the same principle as described previously; i.e., use feedback to
make the system linear then put a robust linear controller around it to stabilize the overall
system. The interesting point in this procedure is the fact that Kravaris evaluates the
unstructured uncertainty in such a way that it is possible to apply frequency-domain results
from linear robust control literature. More precisely, and since only partial linearization is
used, the approach taken is the following:

(1) Make the input/output response of the system linear by appropriate input-output lin-
earizing state feedback.

(i1) Evaluate the uncertainty as a multiplicative band of the resulting input-output system.
(ii1) Design an external robust linear regulator on the basis of linear theory.

Step (i): Input/Output linearizing state feedback: Consider the nonlinear system:

r = f(z)+g(r)u
y = h(z) (7.16)
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where r € R".u € R,y € R. The problem of finding a static state feedback of the form
u = y(z,v) such that the v — y input/output is linear and of minimal order was posed and
resolved in [Isi85]. The results are:
The minimal order of the v — y system is the relative degree of (7.16), i.e., the smallest
integer r satisfyng:
(dh.ad}"lg) £ 0.

The input/output linearizing state feedback is given by:

v = S;:Oﬂ’tLl;(h) -1 -
u = 1. r—1 ( { .1 ‘ )
(=1)='3-(dh, ad;™"(g))
where .3, are arbitrarily selected numbers. The corresponding closed-loop response is given

by:

ke

P2y
Ek:Oﬂ"gt_k = v.

Assumption 1: Assume that the nonlinear system (7.16) is minimum phase, that is the
(n — r) unobservable or zero dynamics are stable.

Step (ii): Structure of the uncertainty: The way Kravaris evaluates the uncertainty is by
assuming that the plant/model mismatch can be expressed as a Volterra operator applied
to the model. That is, if we consider the family Il of nonlinear systems y = H(u) (not
necessarily of the same order), then:

I. For all plants A7 in II, there exists a Volterra operator of the form:
An() = ln(t = 7).(r)dr
such that: N
M(u) — M(u) = A M(u), Yu
where M (u) represents the input/output map of the model (7.16).

2. An upper bound {{w) of {,, is available such that
Imliw) < l(w), Yw
where the overbar denotes the Laplace transform.

Step (iii): Robust linear control design for linearized dynamics: Once again, results
from the robust linear control literature are used. Since Kravaris is using frequency
domain bounds on the uncertainty, he applies standard linear system results for robust
control [DS81]. For the family of plants II, if we take the nonlinear state feedback (7.17),
and the external feedback controller:

t(s) = C'(8)[Fspls) — §(s)]

and we assume that the closed-loop system corresponding to the model Af is stable,
then the closed loop system will be stable for all plants in IT if:
C'(iw) 1

S Beliw) + Cliw) ~ lw)
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7.3.5 Parasitic/Unmodelled dynamics:

In [TKM88] Kokotovic and Marino attempt to unify geometric and asymptotic method-
ologies. While geometric conditions such as conditions for feedback linearization are
restrictive but exact, asymptotic time-scale results are less restrictive but approximate.
A geometric characterization of asymptotic time-scale properties is the existence of an
invariant manifold in which the system is described by a reduced order model (Marino
and Kokotovic [MK88]). One possibile way to relax the feedback linearization con-
ditions can be obtained by requiring that they be satisfied only for a reduced order
model. This idea has been suggested by Kokotovic [Kok85] and developed for a flexible
robotic manipulator in Spong et al [SKK8T]. It is shown that the nonlinear controller
preserves the regulation property in a prescribed stability region in the presence of
unmodelled dynamics. The size of the region can be estimated.

In most applications, the design model is of lower order than the plant because of
some unmodelled dynamics present in the plant. Following [TKMB88] we assume the
singularly perturbed model of the plant can be obtained in the form,

t = fi(z)+ Fi(z)z+ Gi(z)u, =z R".u€ R™, (7.18)
iz = falz)+ Fo(e)z + Galze)u, =€ R, (7.19)

where the functions f,, fa, F}, F3, G1. G, are bounded and differentiable with respect
to r for all € B, (a ‘ball’ in R"*), (z,z) = 0 1s an equilibrium point, and x > 0 is the
singular perturbation parameter. - is the state of the unmodelled dynamics.

Assumption 1: The unmodelled dynamics = are asymptotically stable for all fixed
values of r € B,, that is, there exists a constant ¢ > 0 such that:

ReMF2(z)} £ ~0 < 0.

Remark: We note that the stability assumption of the unmodeled or residual dynam-
ics is a natural one for structural control since we will utlitmately rely on the natural
damping of the structure to stabilize its (possibly very) high frequency dynamics.

The assumption g <« 1 implies that the unmodelled dynamics are “fast” relative to
the dynamics of . A reduced order model can be obtained by taking y¢ — 0 which
obtains the model,

& = f(z) + Gle)u (7.20)
where f and G are defined by:

flz) = filz) - Fu(z)Fy Y (2) fal2).
Glz) = Gi(x) = Fi(z)Fy (2)Gal ).
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Assumption 2: Vz € B,, the reduced order model (7.20) is feedback linearizable,
that is. there exists a state diffeomorphism # = ®(zx) and a state feedback control
u = «afx) such that, given an n x n Hurwitz matrix A, the identity:

0%(z)
27)if(2) + Clz)alz)] = Ab(z)
holds for all * € B,. If ® and a are applied to the full order system (7.18)~(7.19), and
the new fast variable » = = — h(z) is introduced where h(z) is the so-called “manifold

function™’

h(z) = —F; (z)[fa(z) + Ga(z)a(z)),

then the full order system becomes,

r = ®'A®(z) + Fy(z)y, (7.21)
ui = Fa(z)y - ph. (7.22)

Stability analysis: Let P, and P¢(z) be defined as the symmetric positive definite
solutions of,

P,A+ATP, = -1,
Ps(z)Fy(z) + Fl(z)Psy(z) = -—I..

Then the Lyapunov function to be employed is,
V(z,n) = 7 (2)P,®(x) + can? Py(x)n. (7.23)

This function is a weighted sum of a slow part characterizing the stability properties
in the manifold 7 = 0, and a fast part characterzing the off-manifold behavior.

If the bounds cj, c; and ¢} are evaluated over z € B, as,

20| Pe(x) | k; <
2|l P@()Fi(2) || < e
2|l Pe(z) || kot |l Pe(z) )t <

where the constants k; and k; are determined from the requirement that for all = € B,;

Fhe(z) @M (2)A ]l < Ky,
Fhae(z)Fi(x) | < k3.

then using the Lyapunov function (7.23), the following stability result is obtained:
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Result: The equilibrium = = 0,5 = 0 of the feedback system (7.18)-(7.19) is asymp-
totically stable for all:
1

0, ——— 7.24
mel cic3 + €3 (7.24)

and an estimate of its region of attraction is:

Sp={z.: Vi) <}

where cis the largest constant such that the set {z : V(z,0) < ¢"} belongs to B,. This
result describes a robustness property with respect to dynamic uncertainty. It states
that the stability properties of the reduced order design are preserved, at least in Sp,
for unmodelled dynamics scaled by any g in the interval (7.24).

8 Conclusions and Directions for FY89 Effort

We have demonstrated using a combination of simulation and analysis the potential
henefits of nonlinear control system design for rapid slewing and precision pointing
using the ideas of PFL. In the next year we will proceed to design several laboratory
experiments to further demonstrate feasibility and to test options for implementation
which provide robust operation with imprecise modeling of the elastic structure.
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A A Lemma for Lagrangian Modeling

In this appendix we provide some useful identities for performing the calculations
indicated above.

C'onsider a spatial coordinate frame, denoted the ‘body’ frame rotating relative to a
second reference frame. denoted the ‘inertial’ frame, with angular velocity w in body
coordinates. If the relative angular position is characterized by parameters ¢ € R*, say
Euler parameters, then w = [(£)¢, and we have the following.

Lemma 1 Consider a function K(w). where w = S(f)é Then

d oK OK|" 7. [da
where N
a= (g—f}) : (A.2)
O
Proof: Direct computation yields
oK 0K\ o
% T (7’:) I(¢)
OK OKY 0 :
% (5;‘) &(E(f)f)
and d 0K OF d (0F 0F d
< { { 1
i e e~ ()] + (8 [z - Ggmen
We need only show that
E(6) - 2(S(6) = ~23(¢)

Let 7; denote the it" column of &. Then the above matrix equation can be interpreted
as three vector equations

d C :
(———a,(f)) E=0c,+wxo;, fori1=1,23

e

The validity of these equations follows from the observation that each ¢, is a vector
denoting the coordinates of a point P in the body reference frame. The quantity on
the left is the velocity of the point P in the inertial frame, whereas o, denotes the

velocity of P in the body frame.
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B Supporting Computations for B-spline model of planar
slewing with uniform Beam appendage

In this appendix we summarize the computation by explicit integration of the required
tridiagonal matrix parameters obtained from the B-spline finite element model for
planar slewing of a rigid body with attached appendage consisting of a uniform beam.
See Section 4.4.1 for details of the model development.

By definition, the N x N matrix NV given in (4.69) has elements given in terms of linear
B-splines as

(N, = / Bl (z) d=
fori.j=1,...,N. Given the “hat” shaped, linear B-spline.

¢
Bl(z):=(¥)[z = i(£))B)(:) + ()2 +2)+

N ]B?+l(:)

where the zero order B-spline is chosen with continuity from the left; i.e.,

Bl(z):= { Lotz Sz <win

0, else

Then we have three nonzero cases to consider.
Case 1: t =7 = N. Then

¢
N

| =

(V] = /;::(%Z(ZN —z)d: =

Case 2: ¢ = j £ 1. (Refer to Figure 2.1.) Here we obtain a simple form for the integral
by transformation of the variable and limits of integration;

[N]ij = /B (2)d=

Case 3: 1 = 7 < N.

[N];;, = i B!.\(z)B}_\(z) d=
= / (¥)2(-_;J_2)2 d:+/ (%1)«(_‘]_:)2 -
-2 -1
L L
= [Trede + [T - o) de
2 ¢
T 3N
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Figure 2.1: Linear B-spline functions on = domain.

For the N x N tridiagonal matrix N’ with elements

(V) = /a_ L Bl () d=

fori.j =1,...,N we obtain three nonzero cases. J

(Case 1: i =7 < N.

[N/]ij = /:'“—(L;")z =

Similarly, for : = 3 — 1.
The N x N matrix K’ has elements
r -/ t a 1 1
£ = [ 5Bla(2)BL() d
which has two nonzero cases of interest.

Case 1: 1 = 3.

= 2141 142
[R]i,:/ (%) d~+/ () (zi42 —2)dz =0
e Zr41

Case 2: i =7 + 1.

[ = [ = 2 dz




ﬁ
I BN N BN B N B BN D BN D BN B B BN B e

SE!-88-10-15-WB 61

(£ = =00 [ = 2)de =

Under the assumptions of the planar slewing model, the 1 x N coupling coefficient
matrix NI = has elements

Case 3: i =7 — 1.

INT _p4/ :Bl(2)

fori =1,...,N. There are two cases of interest.

Case |: 1t < V.

/ Bl(2)z = [ (3)elz - it5) d"‘L/..H 26+ 2)(4) — =] d=.

Changing limits of integration by the transformation * = z — z; in the first integral
gives

(

~z

)/ﬁ(.rﬁ—i‘%)m dzx
0

’ 21 l
(%) (3 +l2)-

*
-
L

e
T
|
-
o~
=
e
I

C'hanging variables (and limits) of integration in the second integral yields

f::‘+2(¥):[(i+2)(‘ﬁ) —z]d: = (%)/(;N(Q-F(i-%- 1)E) (& — z)de
Ll i+l
= (ﬁ)z[é 9 ]

From which we can obtain

(Case 2: 1 = N.
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NONLINEAR MODELING AND

ESTIMATON OF SLEW INDUCED

STRUCTURAL DEFORMATIONS

Thomas A. W. Dwyer, III

and

Fakhreddine Karray

ABSTRACT

A monel of the ncnlinear dynamics of a deformable
Mmaneuvering multi body System is descrited, wherebdy
slaat;c de’ormationa are modeled by restor:ng forces and
diemypative forces At point mass appendages. This model
18 orought into bil:near form. Estimation of
Qe OrmALions OCCASlOned by rapid slewing maneuvers s
cArr;2gc out by 4 filter tased on a globally equivalent
liasar model of the bdjlinear dynamics, and is shown to
re an improvement over the extended Kalman filter. To
further allevidte the computational burden, the
et imated deformation [tate is propagated between
obaervations by a low dimensional operator spline
interpoiator of bilinear system Volterra series, which
ias eaally implementeq.

INTRODUCTICN

Thi13 paper proposea a new nonlinear, nonparametric
method for off line mog2ling 4nd on line estimation of
the derormation of a [lex:hle structure, undergoing
rapid rotational maneuvers,

In these circumstancesa, the structural stiffness
and camping coefficlents depend on the angular
acceieration u, the angular rate @ and the square of the
angular rate o . In the single axis case, the
excx:acxen or_the atrycture is represented by the
vector u « (w, w , 2w}, to which the structural
dynam)cs responds as a "dilinear” (i.e., parametrically
excited) system. A similar technique for multiaxial
rotat:ons yields a bilinear model with resapect to @atrix
valued excitations.

Two methods of estimation and modeling are combined
Lo achieve deformation state deteraination:

A. A method hasec on a feedback linearized procedure
whiCh gives an eatjimate of the deformation state Dby
means of a filter conatructed from the eqQuivalent
linear dynagics, whiCnh is faster than the extended
Kalman filter.

B. The mocdeling of the de’ormation atate of the
ALructure Dy nedns of Jolterra series
1aLempoLlAlors,

MODEL OF A DEFORMABLE STRUCTURE AND EQUATIONS OF MOTION

For purposes of illustration of the principles
involved, our structure will conajat of a primary
mirror, attached tQ a apdacecraft, and a secondary mirror
attached to the primary 1n the snape of a Cassegrain
telescope by means of jdealized massaless links. The
primary mirror structure w“ill also be regarded as
attached %o the apacecraf® by means 0f a massless
link. Equivalently the =ame model can de thought to
repreaent a laser 2eam =xpander, as in Zigure 1.

The simplified %elescope part of the structure can
itsel?! be moceled as a system Of twoO masses attached
together %y a aingle "equivalent® link with "equivalent™
atiffness and damping coeffic:ents, 80 that the same
restor:ng forces at the secondary are obtained as :f
with more than one link. The modeling im summdrized 1in
the appendix, and figure 2 illustrates the geometry.

2 xpressed in the body fixed coordinate system O(b
b=,

5?), the coupled vibrational, translati{onal and
rotational equations Ol Sucn a sLructure oecome:

Vibrational:

1

no[yozniocdonz]y~(é~azjooLao}~c§~xy-r

Translational:

- . . T

-a°~LTH°{y~zay«;n~u2]yl-L £ec°

Rotational:

1

ho'ﬁ(o.ythﬁy.yHu
- ‘v .
u(Jo'J‘(a .y)'sJ‘(y.y)}u

T . W x T -» * t -
F(o+y) H°y°R1(u.o'y)y aoL Hoy CRu Krf w(a)da
v e Foey)Te

y denotea the (2nx1)(Zor planar motion or (3nx?)
for out of plane motion) matrix of defiectlion
coordinat s« of ths cente~e o n appencag=s from their

LsnderorTed potitiona, n=2 in Lhe cate when “he erconAiry
@ir~or 4nd Lne spacecralt plaiiorm are regarded as

T ADNSNIaZee af Lhe primary, 1 18 the torQue about the




(al3o used .n defining R = dJAgirJI for K,), are chosen
30 that

N
{l r; 'BJI‘ : 2a/N

where M 31m_X An3 A" mounga tne eigenvaluea o A,
c.e. Jexp At]<< Nexpl-2at., for square integratle
inputs (lower ®ounga an whe we;gnts are also needed wnen
tre ;nputs Are nst <0, dut ars bounced: (Dwyer, 1986)).
Tne acdvantages of sJCcnh modeling Are:
*Tne model dimensaion :9 equal to the number of teat
inputa.,
*Mogel.ng Brror 1a diatributed throughout the chosen
tnput a1gnAal class {j.e. by frequency or amplituage),
rather Lnan depencing on nearness Lo a single
reference trijecLory.
*The 1nterpolateda ajgnal (reaponse) can he proven Lo
converge Asymptotically %0 the true system response
for any (unxknown) exci%at.on in the choaen ai1gnal
class,
in Lnx;v}ec;aggue 9f modeling, we can racord Lhe
r=3l gata v 7, V' py exciting the real system with
{conalant or nonconatant) test jnputs to conatruct the
;nterpolater. The test 1nputs can be choaen to hetter
4Zproximate Lhe expected 2xC1Lations of the aystem.
Thus, we can decuce that the raal systea Lime reaponses
are gsed Jor model matcning, rather than responsea
synthea)zed from the mAatnemat.cal model.
The pronlam J4ith this tecnnique, Mowever, lies n
Lne 74ct LNAL & 3noulc nave atcorage of curves in order
tc compute the ¢ 'a. This numcer (s equal to mxN x I,
wnere m ia the numter of test inputs, N i3 the dimension
o ine state to be modeled and I 1s the number of
pcasible i1nitial values of eacnh component. This
21ficulty does not allow the aystem to run in real
t;ze: e.g., Ior the case of n point masses linked dy
masslasa but elastic connecticna one has N = 2n in the
pidanar motion case.

ON-LINE ESTIMATION

In tnia section we try %0 profit from the last two
Lecnniques and create a zore effective one Dy making use
of the transllion matrix spline of the bilinear system
of our mogel:

) -
n(s) (e, tk)n(t. tk).

-~
-

In Tact the transition matrix spline 9 interpolates the
transition matrices ¢ correaponding to the bilinear
system model fx?l:ed By constant or piscewise constant
test inputa '}/, Thia permits the conatruction of the
response of the real %“ime ayatem in plecewise closed
{orm, thersby replacing response curve storage by an
dnalytic transition matrix generator, rather than the
construction of the coef;xc*ent interpolator cl's from
the output test aignal y'{y . y<, ..., y®!.
one gets & = ("7} ‘romy - IO?QI where 079 g
tne (p, q) entry in the transition mabrix witn oU!
constdantsa:
.1 = 2xp{(A IJSJ“(J)}

Tne 1nterpolated Lranai%ion matrix i8 then used to
HPCAL? Delween ODSSrvatlions the structural state
e8%1mdt=23 ortained Irom a filter based on a glohally
feeldtaCk=linvdar:z2d Yranafornat:on (seen in aection 3.1)
of tne dilinear structural model. This last technique
Nat Lne fol.0wing Teatures:

‘

' 2 i3 Open L0GL. <ILR A Made LO matcn the real system
al diecreLe intervals ny re~initializing:

. .
A LA DL
LY -
nkP_ I -
< - v
In 2ontrast, %rhe giract mocel.ng o7 the 170 cperator

continuous.y tracks the Lrus ayatem Lime
reaponse n'itl, Zut in LMis case ¢, (i) cannot te
generateq analytically and must be computed 0 f-line.

*The presence »f an addiiive, aven ;! nOl aCt.ve.y
Suppressed, 1nput does not Zive ~12eé Lo 3 3teady slate
tracxk.ng error otiserved I1n Lthe 2arlier l;lerdture wnen
Aadditive a3 well aa multlipli:cative inpyts ars present,
as 18 the case ‘or ~apidly 3lewing.strucLures. [ndeeq,
a convolution corraction based on ¢ can e adged.

*The number oI Curves L) be generated 18 only 7 x
N insteag of m x N x 17, (where again N = 2N “or ine
example of a structire composed of point maases
connected Sy 2ilast.c appencages 4nd N pldne aotion.

*The posaibly nigh l1zens;0ndl recurdive Tilter can
run at a alower sampling ~ale, conaiatent «ith on doard
CPU capabilities.

(2]

Interzoia~ion Zxampi2

An interpolatzsr was gesigned fur the same Lwo
bodies beam expancer model previously deacribe]: The
interpolator was opt:imized or input vectore u' = (aq,
Up, ug) of the form {constant, o, o), {0, constant, o)
and (3, o, conatant), chosen with a negative constant
during the first hall of a 10 second nominal mnimum
time rotation, and posit:ive during the second halfs, with
the deformation atate re-initialized at a1d maneuver (S
seconds) from the feecback-linearized Zilter described
previously. The constants were selected Jor boundedness
of the interpolator accorcing to (Dwyer, 1986) in effect
uppes bounds on the expected
W, w ana 2w reapectively,
given in fjgures 6 ana 7.

The interpolator response 18

DISCUSSION: APPLICATION TO CONTROL

The computed torque which will orient the system in
the required maneuver will be sens)tive to model
accuracy. This car e alleviated by var:able structure
control at the coat of chatilering. A technique
devaloped by Slotine (1984) suggests that if we know the
error tetween the unknown computed torgque and the actual
computed Lorque, then we can find an optimal
interpolatjon of the variable structure corrections on
each side of the ideal slicing surface that effects
comprom: ses with the accuracy of the aystes model used
for torque comdutation and the control bandwidth, to
Lrack yn an optimum way the reguired trajectory. Thia
error can actually be derived from the on-line modeling
of the state delodrmation. In fact, an upper~ bdouna
ex1ats between the unknown true atructurail Lrdasition
matrix ¢ and the operator apline interpolator ¢ (Dwyer
1980). Ang because the computed torque is related to
those functiona through the equations of mot:ion, then we
Can assume thdt an optimda. computed torque correction
COmpAliDie with the rohustiness of the mocel can be
found. Thia will e repor.ed ¢.sswhere.
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APPENDIX

Notatjon of Svmbols Me~ in the Text and Graphjcs:

*1

0 Position of i-th appencage {f undeformed.
] 2 o
(b, b% 53): Body fixeq reference system

¢: True center of mass

N(n‘. n§, ni): Inertial reference system.

¢: The vector from body fixed coordinate to the
instantaneous center of sass:

¢ -ulp® 5u3(25- 3d)

if 0 is the undeformed system's center of mass, then:

34

Cc e f“ x°.
where:
uJ . mJ

mo . tJmJ

u’ is called the mass ratio of the j-th appendage,

[} \ sl .
and u 19 cailed the mass ~at!o of tne main body. [ is

the net external force apglied to the (center of mass

Deend L UAabLlULLY

Lot e LK

of) the i-th appendage,

1
X

i T
let y = ‘2 = col (xi) ' xt: (x: ' x; , X, )
1
o
92
i i 1, T
o . = col (o) , al: (D;. D;. 93)
1
w
2
w
o
3
")
where:
2
B8 a8
[}
pJ - qu‘, aJDZ . 9.53
i 3
*2
-l D -
;' 015. * wy . u353

- is the angular velocity vector of the body fixed
eoordinate frame

o5’ 82, 83).

T = diag ([I]} and L = col{[I]), (I],..} where [I]

denotes the 3 x 3 itdentity matrix.

. ) A 0 °u3 wy
Q - disg{w] = w where w = us 0 -u,
., W o]

My = diagim!(I]} ¢ N = %HOL - col (u'l1))

XK = diag(k‘[l]l and C = dlag!ci[lll.
7o) = (31]52]...] . 5) defined as &

J =J . rr(o)nor(n)

o hud

T T
ey yy =t (p)H° F(y) T (y)nor(g)
Ry(e, 9) = [0 (' ax' + T'w)]...]

For planar motion, every third rows and columns are
omitted. One then has

0o -
@ 8 Kk, anc if J = diag ([1 o]l. then the 3n x 3n

matrix 0 is replaced througnout by the 2n x 2n
[watrix 5J, 02 by 62J2 - -6af (where I is now the 2n x 2n
L NN T ST TP RIS SV frita L




{dentity) and 3 by wJ. Fuinally, M in the equation of

planar motion is
'3
T 1
Ma [l -NL EHO. where M , I, N, L are redefined to be o
[ X

2n x 2n).
S.e

Figure 1
Simpiiied Donigs of The Space Laser Tulsscope Strectiure.
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SLEW-INDUCED DEFORMATION SHAPING'

T.A.¥W. Dwyer, III
Departament of Aeronautical and Astronautical Eng!neering
University of Illinols

Urbana,

Abstrace

Computed torques for pointing and tracking require
compensation for slew-{nduced structural,
foredocy/aftbody, or optical train alignment
deformations, hereafter callec deformations. Thus even
1f only line-of-signt variables are to be commanged,
yet [full state feecback {3 neeged. The solution
proposec here s to decsouple Dby feedforward of the
line-of-signt slew dynamics Iinto the deformation
control loop. I: (s alsc shown {n this paper how
ardbitrarily few actuators are needed for such
deformation shaping, at the cost of higher
differentianjlity of the reference line-of~signt
dynamics. The low rates, single axis case {s developed
here in daratil, ana frae .vy_pnnam‘ljry tn hign rataa and
multiple axes Dby global feeddback linearization |is
outlined.

Introduction

In recent work on the control of robots with
elastic Joints, the state of the coupled rigid and
elastic dynamics is forced to evolve {n a "slow"
integral manifold, so that the elastic distortion to
the computed torque becomes a transient, {.e., the
"transversal® (off-mani{fold} dynamles. That approach
is followed here in treating the problem of slewing
with deformadble bedies, toO show how a family of
control-depencent slow manifolds can be constructed, on
each of which the aslew-incduced deformations are
expressidle {n teras of (higher derivatives of) the
alewing angle. This rellieves the banawiath
requirementa of the primary slew actuator, but
generally requires that slew-generated "deformation
shaping” forces or moments also be applied, such as
through avaflable structural actuators. In the absence
of sufficient natural damping, it {s shown how a "fast"
correction can also be appliez, {nvolving an on-line
synthes!s of the "transversal® part of the
deformation. This requires liigher control bandwidth
than {f only the slow control were used, but only from
the deformation shaping actuators, not from the slew
actuator. The role of "prior" or %“posterior™ global
feedback linearization for the extension of the method
to the multiaxial or high rates situation {s then
outlined, as well as the interpretation of the slow
manifolds as sliding surfaces for robust var!able
structure control implementation.

Deformable Rotatlonal Dynamics

The mode]l for a rotating body to be used here is
given by Egns. (1), (2).

Joscboup o QTZ -1 ETI QD)

My CyoeKgego - EL (2)

' Research supported in part by SDIO and managed Dy
AFOSR (AFSC) under contract Fu9620-87-C-0103, and by
NASA Grant NAG-1-613.
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where rotation about an 8xis through the undeformed
center of mass, measured by the angle 8 in radians i3
presumed, entajling deformations represented by an nx!
column matrix y(t) of generalized coorgdinates. A
torque 1 about the same ax!s with respect to which the
attitude angle 8 {s measureg entalls matcohing rotation-
deformation coupling coefficlents, g = g. Deformation
shaping forces or moments are encoded Dby the »xl
matrix £ of generalized forces. To fix jdeas, the
central hub with symmetrically placeg and
antisymmetrically ceforming cantilevered appendages
developed in [1] can be considered, wherein the
coefficient matrices as well as deformations are
expressed in terms of assumed sode shapes.

Hnro esnaeral wndele,
nonlinearities arising from gyroscopic effects or full
spatially dlstributed deformation dynamics or both, are
found in [2], [3), [4), (5], dut then time-varying
dynamics or unbounced operator coefficients arise, for
which the present method is still under development.

tnvalving elther eoupling

Slew=-Induced Deformations

The standard ®"proportional plus derivative®
control law given by Eqn. (3) requires feedforward of
seasured structural acceleration to the pointing and
tracking torque control,

-y -~ e - e =7
t=J8 «c@ <+ k8 +n

<

-a (8 -8 ) - ao(e - 8" (3)

[ ]
where hats denote estimates and @ I3 the commanded
angular trajectory. With a good model and good sensors
the closed lonp dynamics is then approximated by Eqn.
W),

Jao (e 8,Ja8 + (c+a Jao sy (W)

[ ]
where 80 : = 8§ - 8 and no structural controls 'per se'
are applied: £ « 0.

Besides the (everywhere present) gQuestion of model
accuracy, the need for highn bandwidth slew torgque

actuators and for full order structural sensing arises.

Exact Slow Manifolds

Following [6] - (8] In part, it is shown here how
deformation-induced line of sight disturdances oan De
reduced to transients: Egns. (1), (2) are first put
into asingular perturdation form: Let K be a normalized
atiffness matrix, 8o that one has K expressed {n terms
of K and a perturbation paranetler ¢ > 0:

K e ¢X (5)
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Without loss of ‘enerslisy one may set M = I « jdentity
ana K - __dlag l...‘ vw5esee} with v, Cwy Coiy, then
set ct =W, °, 80O thaf X = diag l‘.(u21n1) veen)e
Whatever ihe phnysical interpretation, one may seek
polynomial controls in the parameter ¢,

1-1°°u‘0...°ctp (6)
!-%’:5‘0...0359 (n

such that the deformations ocan be expressed as
perturbations from the rigid body limit as ¢ = 0, {.e.,

Y =cz -y (8)
with the normalized odeformation z (which has units of
fo.ce) also a polynomial in ¢,

(9)

and y'(t) = 0 as t < =. Indeed, insertion of Eqns. (5)
ana (8) into Eqns. (1) and (2) ®rings the latter to
singular perturdation form,

JO’C&‘KG‘CQTE'T’grﬁ‘V (10)

ciMz + C2) + Kz + g 8 = Ef (11)
where the disturbance v is given by Eqn. (12),
v e - Qri' (12)
and y' {s governed by

My eCy eKy =0 (13)

If ¢ = 0 then z- _z_o lies {n the *"rigid body

mani{fola”,

ao - X -1 (EII - gl.r - E' 6 . 5'9) - hote.s'f._f.) (1“)
where
B« £ -g'a’,g -0 e - and

k! =gyJ k. Then by Tychonov's theorem of singular
perturbations (6], for (in general small
enough) ¢ > O there i3 also a neighboring “slow
®manifolg®,

zez vz, v, - n‘(e.é.g.x._?_.x...) (15)

where {f z(to] =h_ (at t,) then z(t) = n_ (at t) for
all t 2 e, ¢ ¢

In particular, slow manifolds oorresponding to
polynomial controls in ¢ can be found that yleld
polynomial representations in ¢ (Iin which case ¢ need
not be “"small"): indeed, the {nsertion of the
expansions (6), (7) and (9) into Eqns. (10) and {11),
followed dy collection of equal powers of ¢, yield the
following recursive formulas,

JO'eO'k0-1°'2£°0v (16)

[3 | S a8 - ££° ()
T T
E-J s 'Jq v e 21.1 (18)

£ +C: X - 1
Mz, C_z_J X LY 3 gj,‘ (19)
for § =0, ..., p-2, and

T2 T

n oz - - £ (20)
2 HaTHhTE S
- . . :
M 2o ° Czp-l Egp (21)
where z = Q is presumed, 8o that it one
sets 1 °- 0 and £, =0 for 32 . 1 then

also z7 = 0 for JJz p. Thus, the postulated polynomial

. solutTdn given by Ean. (9) is verified. In particular,

no convergence consjiderations arise and no truncation

18 needed

(hence, the terz "“exact alcw manifolds”).
Tnis is possible if and only if Eqna. (16) - (21) can
be snlived for 13.53. 3«0, ...,p, &3 giscussed nevn,

Deformzation Suppression

The simplest choice of slow manifold
is z = 0, wnich exists if and only {f it is poasidle to
aolve Eqn. (22) dbelow for T and go.

To v
o830 = c [ )« (22)
e [}
ﬂ -
where
(Jsz *cs ¢ k)
¢ (3) « (23)
-] gs2
and
foy
c. - (24)
o 0 E
obtalned by setting z . 0 in  Eqns. (16) anc

an, ang then Laplace-transforming (the eame
symdols 6,1,f,2,y will De used both in the time and
frequency domains).

Noting that dimeg_+ (1*n) x (Vem) (where n =
dim y snd 2 = dim f), Pt 1s seen that ¢ §{s square (f
and only {f me=n ("independent modal apgce control™).
Then ¢_ I8 fnvertible If and only If E is fnvertidle;
tnoeea’then Eqns. (16), (17) ylelda

(g - gTE"g)B NIRRT AP Y (2%)
oot (26)
- -0

L ]

Letting a%: = & - 8 , the tracking prodlem is then
reduced to a regulator problem based on the reduced
slew gdynamios given by IEgn. (2%), that s, to the
chojoce of s stadilizing regulator lloh) for the block
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dlagram in Figure 1:

v
o — \
—?—.N‘(,)' > w."i.i)“"‘.‘}-‘

Figure 1

The slew torgque {3 then given by Eqn. (27):
et e f{o- e E g]s‘ﬂ. - Ho(s)AG (27}

For Egn. (25) to be a valid slew dynamics model,
it 13 alsc necessary to apply a deformatlion suppressing
control f, whicn {s found from Egqn. (26) by insertion
therein of the close¢ loop pointing angle & found by
inveraion of E3n. (2%):

- - - [ 3
e'E 'a)s? v es e )™y - E 19326

« E ds \(J - o

A"‘
|
|

T.-

- £7as? (0 - e " a)s

2. es e k] 7'H_(s)a0 (28)

In particular, {f a proportional and derivative
regulator Ho(s) - a;s v a, Is selected, the closed loop
pointing error dynamics becomes as shown in Eqn. (29):

(g - gTE'1g]A5 + (o = l‘)Aé e (K 3,080 = v (29)

In contras: with Egn. (4), the driving
terz v = - n'y' s a transtent as expected, and yet,
unlike Eqn. (3), no high frequency correction term i3
neeced in the slew control law of Eqn. (27). The need
for astructural sensors and high bandwidth actuators in
the implementation of the control law given dby Egqn. (3)
is now replaces by the need for full order structural
control. This {s alleviated next,

First Order Defsrmatior Shaping

ir <, In Egn. (22) &3 not {fnvertidble, the gystem
cannot be "rigiafiec”, but the coupling term n y can
8till be replaced by the fast transient plus higher
derivalive terms Jn the pointing variable 8. The
simplast cholce of such & slow manifold f{s 2=z,
which exists !f and only If it 1s possible to 'o?ve
Eqn. (30) below for 10,1‘.£° and f,,

. T T T
2,(3) 8 c|(a)(1°.£°,c1‘.:£‘) * (v.,0.0") (30)
where

T -1 &

g?(n) . (csz *cr*k, =nk a8 ,

- [{ms » c]x"gs3lr) (3)
ang
: JT \ of
(8) = T 1,2 o Al (32)
€ t8 0 -n X 'Es =
o -[ms-clkes o E

Equations (30), (31), (32) are obtained by solving Egn.
(17) for z , to yiela
-0
= -1 2 .
z =K {E£ - gl (33
in the frequency domain, then inserting Eqn. (33) intc
Egns. (16), (20) ang (21) with pe! (hence z, = 0).

Noting that dim ¢, (a) « (2+n) x (2+2m), it is seen
that ¢, (s) (s sQuare }t and only {if wm=n/2. In this
case, lr c1(a) is generically {nvertible one may set

- * T Lt £, ThT
€, (8)9,(3) = : (Yo(s).lo(s) NCOBHC {34)

(which {s independent of c¢), and then define the slow
transfer functions for vt = 1 <+ ¢, and £ = £ + ¢cf as

-] 1 - =0 =1
follows:

T _-T .T
Y'(s) : Yo(s) 71(:) (35)
Yr( ) . Yf( ) - Yr( ) (36)
4 180 ..03 _13

Equation (30) then ylelds

Yi(s)e = 1+ v, (37)

1is)e - ¢ (38)

where the transient disturbdance vy is given {n teras
of v of Eqns. (12) an¢ (13):
T]T

v, = (1127 | 97) eyt (v.0.0 (39)

1

No transient appears in Eqn. (38) because, instead
of directly {inverting all of :1(3). it 1s possible to
solve separately for t_ in terms of £° (ana &) from
Eqn. (16) ang for 1, f{n terms of f and f from Egn.
(20), while (£ _,cf, ) are obtainabl® only' froe Egn.
(21} with z, " from Eqn. (17), nefther of wnich
contain w.

The tracking problem !s now reduced to a regulator
problem based on the reduced slew dynamics given by
Eqn. (3 ), that is, to the cholce of a stabilizing
regulator H,(s) for the block disgram of Figu-e 2:

-1
H (s) Yt(')

Figure 2
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The low dandwicih slew torque control (s then given by
Eqn. (40):
\

T - L]
T et ¢t =Y (a) O

° \ - N,(D)AO (%0)

For Egqn. (37) to be a valid slew dynamics model,
1t i3 aga!n necessary to apply a deformation shaping
ocontrol f, which {8 now found from Egn. (38) by

insertion therein of the closed loop pointing
angle 8 found by inversion of Eqn. (37):
- .
£er vz =1 e - Y (a)e
- -0 L8 - -
7, T -1
= Y {s)Y (s) 'H ,(s)a8 (81)

The closed loop pointing error dynamics now becomes as
shown {n Eqn. (42):

{YT(s) H(s)} s = v (42)

1

It turns out that each scalar component Yr(a)
of Y (s) has the same number of poles and the “same
numder of 2zer~os as Y'(s) . In particular, the poles

of Y'(3) and of eacn 7;(:) are given by det c‘(al.

Thus, only the compensation Hy(s) determines the
number of derivatives of the pointing error A8 that are
needed to generate f from Eqn. (41), as well as t froms
Eqn. (40). This 1is an exact generalization of the
"indepencent modal aspace control™ case given by Egqns.
(27) and (28). In particular, the high frequency
disturdbance to the slew dynamics is again reduced to a
transient (now v1), and no high frequency correction is
needed for the pointing control torque t.

P - Th Order Deformation Shaping

More generally, a slow w@anifold with the
representation of Egn. (9) as & (p-1)-th order
polynomial {n ¢ exists if and only if Eqn. (43) below

can be solved for TJ, LJ. J =0, vty Py

- T p p,.TT
2,(s)8 cp(s)(xo.go e €T ouE gp)
T)T

+ (v, ..., 0 (23)

where (s) and c¢_(s) are found by successive
eliminalion of 27, ..., z__, in Egns. (16) - (21).
Now g_,,(s) is (p7?'n) - “8imensional and dim tp(a) .
(p*1+n) x ((p*1) x (1+m)). It follows that tp(s) is

square If and only iIf the following relation holds true
of n~-dim y, » ~ dim f and p .

(4u)

2p derivatives of & then determine the slow

part ¢z of y.
For an §nvertibdle cp(e) one agaln sets

-1 t f T b i
(8 g (8) - (v (o), AMEPRVPRPA MUY

) (45)

to oonatruct the slow tranafer functions for

P 3 P 4
te I ¢’t, snafor fe-1 ‘EJ'
s 3 3=0
1 et v a6}
Y (a)8 1 vp (
Yiare - ¢ (an)
where
P T
Yis) =2 Y(s) (48)
30
p
iy - 1 (49)
30 ™

and the ¢transient v
(12) ana (13): P

is again found from v of Egns.

v, = (107 ngle 7 (ves L n00T)T (s0)

Again no transient appears in Egqn. (47) for f,
only in Eqn. (46) for t. This {s because, instead of
directly inverting ¢ (s), 1t {s also possidble to
proceed as follows:

(a) Solve recursively for z_ in terms of £J for
3=0,...,p (and 2p defivatives of 8)°from
Eqna. (17) and (19), which do not contaln v;

(b) Insert z_in terms of f 's into Egqn. (21),
which | decoaposable A‘lto n equations {n
{p*1) m unknowns (the m components of I for
J=0,...,p, where here n » (p*1) ®» lccor‘dlng
to Eqn. (44), again not containing v;

(¢) Solve recursively for t_in terms of ¢ _ froa

Eqn. (16) (through which v appears), then
for Tyes in teras of _r_.’.1 and !-J""'zo

(through 5J) from Eqn. (18).

It {s from (b) that Eqn. (47) arises,
independently of v, and from (c) that Eqn. (46) artses.

Again the tracking problem Is reduced to the
design of a stabilizing regulator H (s) replacing H,(s)
in the block diagram of Figure 2, where the high
frequency transient vp replaces vy with Eqn. (48) now

giving the transfer function Y‘(s)-‘ instead of Egn.
(35).

The consequent low bandwidth slew torque t {8 then
given dy the counterpart of Eqn. (40), ano the shaping
control £ by the counterpart, or_Fqn. (), with H,(s)
replaced by H_(s) and with Y (s) and Y (s) found from
Eqns. (48) and (49).

Fast Control

If there s Insufficient or non-existent ®a
priori™ damping C In the deformation dynamics for
adequate time scale separation, the shaping ocontrol ean
be asugmented by 8 "fast® term f', as advocated in the
singular perturbation literature, e.g., [6] and
references therein. That s, BEgn. (1) for f (or
1ts Ho(l) counterpart) oan be replaced by Eqns. (51)




ang (52) below, with no change to Eqn. (40) for v (or

to Its Hp(n) gounterpart),

Y T - g (s1)

e aly-cz)e Ao(i -cz) (52)

where y and ¥ now must be obtained from deforaation
sensors, but €z, ¢z from Eqn._,(9), hence in terms of
the 53'3. i.s8.,. Of IJ(a)Y {8)" T for 3=0,...,p.

Since the.™fast" off-manifold term y' in Eqn. (8)
is modeled by y - ¢z, it follows that f' 1s nothing but
proporticnal plus derivative control of the fast
dynamics. In particular, f' « 0 as reguired in [6]:
indeed, the fast dynamics of Eqn. (13) i{s now replaced
by that of Egn. (53),

M l’ * [C - A ] LI [K e A ]x' - 0 {53

hence y' + 0
A; and A,.

by designer-selacted choice of the gains

In the above approach, no change is needed in the
3.%< dyraZ.es ans curredpuonding ocontrol laws, where the
original.K and C are retained, provided v is replaced
Dy v - €'’ (+ 0) wherever appearing. An alternative
is to design the fast control firse, 1.e.,
omit €2, ¢z from Egn. (52), with consequently greater
simplicity in the {mplementation of L. But then C
sust be replaced by C =+ A; and K by K+ A in all the
slow control algorithms.

Example
Let n=2 and B-1, hence p=1, 8O
that z = 2z for appropriate cholces of 1t » t_ :11 and
of r =rerf, serf, T Let alsoe E e,
), e-e, 3% (q,. =d, M=1I, C e dlag (cy,
°2) and XK = dia ag (kl. E ) One then finds
0,03) = (0,,08), #,,(3), 05030, ¢, (T (s8)
where -
2
011(5) = Js® + o8 ¢k (55)
2 2 L]
#,208) = (0,%7k, = a,%/x,)s (56)
" 3
¢3(8) = (s ¢, (q;7%,)s (sm
. 3
0, ,(8) = (s cz) (dalkz): (58)
and
€ (8) = [g, (a),¢, 2(8).8,508) g, (8)] (59)
where
g7 - (1,0,0,0) (60)
T
512(') . (a.(d,(c,/k‘] . dz(ozlkz)‘oz '
(8¢ 0,000, 7k,)8,(s « ¢;)(0k,)8) (61)

€ ()7 = (0,-1,0,0) (62)

-}3

T
£4(8)7 = (0,0,-0 ,-0,)] (63)
50 that

det c,(s) = o0 {(l e )/k

- (s 0 /kz}l - 62(0) (64)

2)

Inversion of <, (s) ylelds the following foras of Eqns.
(35) and (36).

. py(s)

Y (s) = Z;T;T (65)

pg(a)

— (66)
62(3)

Tr(a) -

where Lhg dencIinatir 13 the Juadratic polyhomial given
by Eqn. (64), while the numerators are 5-th degree
pelynomials.

In the idealized case of a perfact slew actuator,
{.e., ¢=0 and k=0 {n Eqn. (1), as well as no structural
damping, {.e., C=0 in Eqn. (2), aofthat ey - -0,
the numerator and denominator of Y (s) and Y (s) take
the forms below,

py = 8 (a9 « 2 )ik, 67
pg(s) - a"(bzsz . bo)/k1k2 (68)
62(3) - azcolklkz (69)
where

a, - olez(kz - k1) + 0 d k= ek, (70)

- °1'2(°12 - °22) * ‘1‘2('2 N 'f)
¢+ dge, - dye, (m)
by = €5d,k, = & dk, (+2)
b, = de, - d,e, 13
c, - '1'2(k2 - k‘) (74,

It follows that the transfer function to be
regulated in the bdlock diagram of Figure 2 bdecomes the
"type 2" system shown §n Eqn. (75),

7'(-).‘ -

(1s)
.2(.2.2 «s)




which ocan be stablljizec by a “damped PID" controller of
the form given in Eqn. (T76):

K (8) = K(sz TR po]/(s +q) (76)

In particular, by matcning coefficients of the
cloagd loop transfer function with those of (8
+ A)°, the filter parameters can be chosen to be Q

3

4
- 52, X = 101 ay - acq, py = 54 /cOK and p, = 1/c°K.

- "
provided one selects ) 410/1032 as the slow time

constant” (whenever a, and a, have the same aign).
More 5enerally. any control design method, be it
LQR, H or co-prime factorizatlon, can be used.

The "slow” part of the shaping control (s then
given by Egn. (41), where the feedback par: consists of
the compensation H,(s) selected as above for use In
Eqn. {(40), cascaded with the two atage lead-lag filter
glven bdelow:

32 . bo]/(a 32 . ‘o) (77)

Wiy - (b 2

2

In the absence of damping as presumed here, a
"fast" correction' to { must de added, in accordance to
Eqn. (52), where A, and A, are freely chosen to impose
time scale separation. The required "slow” term ez in
f*' i3 found from Eqn. (33), ylelding the expression
below in terms of the independently designed slow
slewing torque t

Ly ez, - K-’(Elg(s) - as?jyT e

Extensions to Robust, Multiaxial and
Hign Slew Rate Control

It is possidle to extend the design methodology
proposed herein to multiple slew axes as well as to
high slew rates, In which case stiffness and damping
coefficients in Eqn. (2) acquire angular rate and
angular ascceleration - dependent terms, while the
rotational dynamics of Egn. (1) acquire “vector
product” terms: ef. (4], [5]. 1In this sftuation, the
reduced order slewing dynamics obtained by jnversion of
Egns. (16) - (21') become nonlinear, It s then
possible to (flirst glodally Cfeedback-linearize the
nonlinear counterparts of Egns. (1) and (2) with
respect to pointing variables, such as in (9], (10) and
eslsewhere. Alternatively, it may be possidle to first
invert the nonlinear counterparts of the recursive
Egns. (16) - (21), to obtaln nonlinear versions of the
decoupled Egqrs. (46) and (47) for the slow dynamics,
and then seex to globally feedback-linearize Eqn. (k6)
(Eqn. (U47)'s counterpar: can be dlrectly used to
generate the shaping control f from 1 without
linearization).

Finally, the question of sensitivity to modeling
errors @ay yield to variable structure oontrol
jmplementation: the presence only of the ashaping

control f in Eqn. (2) oan Dbe exploited to design an

"interpolated switcning oontrol” following [11]), with
the selected slow manifolds regarded as the switching

surfaces. The pointing control t can then be designed
for the reduced order dynamics on the switching
surface, by the "hierarcnical” method. These

extensions will be discussed elsewhere.

"
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For the cdse o alew-inayc=d structural deformation
estimalion we T.nd F, » I and F, « lower jalf of B(X)
gelines 2efgra2.  In pdrt.culdar, we f'ind 3. = R,, a0

tnal. In contrast Lo Lhe 2xtended Kalman filter, only
the ®-indepencent forcing -erm Of tne RiccAat! equation
g1éen Dy Q' nas Lo te .paAated, All other coefficients
te1ns now constants. 3y using Lhis procegure a 25%
increase 1n speed, with 25% jncrease in accuracy has
been Tound in preiiminary simulations. Even s0, we
at;ll need %0 procesa a very high data rate of sensor
medsurements, €Nich 18 nol 2asy %0 implement, especially
In 3dpace atructures, causing time delays jin estimation.

Sat:mation Example

A 31molified mocPi of a heam axpandger was
reprasenlec By a primary mirror mass eiastically linked
0 4 secondary sirror mass. Restor:ing Corces and
A1281pALive farces aropor%:onal to ralative secondary
meror motion were modei22 At the secondary. A
Pl=Cewise conatant angular acceleraticn was commanded,
representing the accelerat:on-deceleration profile of a
Znimum Lime retargeting maneuver. Presumed angular
accel=rometer and gyro nolise covariances were
transloraed 1ntd equivalent process noise for the
{eecbdck-linear:zed filter, with the additional
simplirication of neglecs:ing a squared ngise term
correaponding Lo the second entry u, = w° of the
equivalent input u. Presumed strain gauge %ensor noises
were taken from the literature. The relative
performance of the extenced Kalman filter and the
feedaback-linearized filter are seen by inspection of
figures 3, 4 and 5.

OFF LINE MODELING

In this subsection we use the newly developed
method of Bilinear System Optimal Interpolation. This
technique appl:es to dynamical systems which behave in
"norzal®™ dilinear form, (by active suppression of the
consatant dias additive tera b:

X « AX + B(X)u
T
y =cX

which means also:

*The (1/0) benavior is hignly nonlinear.

*The system is high dimensional if arising from Carleman
linear)zation.

*There (s na clean ARMA mocel for system identification.
Then, by using optimal interpolation we get:

*Closed form, circuit-implementadle bilinear
approximations.

*(1/0) based aystem identi‘ication.

*The dimension of the new system is equal to the numder
of test signals.

Now rather than tolerate the time delay found in
the pravious techniques of estimation, we use jnatead
Lre metnoc of operator apline interpolation %0 find the
@erieCLion dmount Detusen ofhAsrvations. The input
output (1/0) operator V.

from the excitat:on vector u L0 an output vector y (such
as v Introduced 24fore) 18 Jmbeédded in a Hilbert space
of {(I/0) operatara of candidate bilinear aystems,
eQuipped wilh a reprogucing kernel:

'
X {u, v) = exp f u'{s)R ‘v(s)ds
¢ L

o
where the weignt matr~i1x R is determined Iy bounds on tne
structural frequencies. An interpolator 2. the fora

-

. i
Vt(u) - f ci(.)Kt(u. u’)

fs constructed, tunedqd so that the atructuril responses
to preselected test jinputs u' are recorded, ana
optimally interpolating at system level the responses %o
other excltations in the signal class. The optimization
is formulated as 3 Minimization of the maximum djatance
between the interpolating operator and dany candigate
operator that matcnes the experimental input-output
s1gnal pairs. If the system data are not accwrate, a

we ghted minimization that does not reguirs exact
matching of system ~esponsen ¢an also be umed.

This minimization 18 carried out in a Hilbert apaca
of input-output operators aquipped with a weighted "Focx
3pace” sgalar product which isx the Hilbert aum of the
causal L© scalar products of the Volterra aseriea aof the
operators in question. A different procedure to
calculate the coefficients ¢, must then be used. The
general method {s discussed in the papers of Dwyer
(1986, 1986b) and de Figueiredo and Dwyer [1980).

The Hilbert space structure for @ inputs (here m =
3) is defined as rollows: let

S P 1€ {1, ..., m)} and let

(L, ¢ ....,t))
n

1
n., .
R T
T
e c expl{(t - t )Al3 ...
1 Xt

...exp((tn_1 - tn)A] Bjn exp(tnA)}x(O)

where B [5‘l|85[ vel

These are the Volterra kernels for Y (t1) -y (tn).

Then 1 n
t t t
1 n
N, V>t o.oror e, [ [T
t n 11 1n iy ‘n o ‘o o
4] h dtn...dtl

n'li""ln n,xt...in

which yields the reproducing property

Vo Kly, ) eV )

The Volterra ser;es for a bilinear system will
'yield a dounded nora <V, Vy> provigeda tne weights r
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dnIAfArmed gvatem ocantam of BANS.

U8 une 2nx1)faay, Ux! here) mat~iy g sccy
conrelndtas 2f evterral forees act!ng on “he centers of
mase 37 Lhe n Aptercapes,

fo '3 the =xlernal force acting at “he center of
Lhe SOCy !:ixec Joordinars avatem, All other notat;ons
uded dare gpoen-ad,

We oan 23s.ly mo*tina L3t all ‘hree 2quations dre
inter~alated,  IF 48 Laxs nnw anly tRe yvihpeasisnal
SGLAL.Qn 3f molisn, Ana sel the ratation arours a 2ingle
axla, w=9k, anc :f "nha *r3relaticnal accelerat;on term
a, is 2ukst:iiteq from Lne tranalational eguaticn, then
w@ NAVE:

Y

ny~<:~25Jn;§-<x'fa~J52;;H)y~(e~62J)Jn-r'-~(L‘r~r°>

whers 10w n = H):, M 1a redefined to account for
contributicns lie L0 translation and every third row or
CoLumN 8 omitteq in ail matrices.  If <e 3ot v Lo be a
§ew ¥ariable sucn that u=Myen,CeCM ', K = KM | and

U =l{w,w ,lw;, then the rotat:onal equation of motion
becomes:

u'(C’u3J7v'iK’u.J'u,Jz)v-f'En

) -
This transfsrzed eguat.sn can also be written in
S1linear form, wnich <11l 5é used ‘requently in the
f0l.0Wing secticna:

X*AX*3{X)u~n

where:

.
s

s
.

~— Y

.
AT O

.
(SN e ]

]

i

b = [3;

7'+¥Xn
X, anda 12 ares_the.vector components of the general state
vector X = (g', W',

This s1mplified oodel, insofar as the links are
regarsed as aass~less, exnibdbits all the coupling effects
between slewing motion anc vidrational motion. A
gistr:buted model under the assumption of symmetry about
tha mass center alsc yielces product terzs between 3 and
structural deformat.ons, and can be found in Chapter 9
o %ne Biox Sy Junkins ana Turner (1986). That mocel of
a aymmetric four appendage spacecraflt can also be used
to illustrate the prccecdures being developed in thia
stucy, 17 desired.

ESTIMATICN AND MODELING OF THE DEFORMATION STATE

Eas:mation of tne State “v Means of observers:

Extendeq Kajman filter formulation:

in general, wvhen we deal with a nonlinear syatem of
wrich the atate variables cannot all he obterved
{corrupted with noise), then the most commonly used
mecnod of fiitering or samoothing is the extended Kalman
f1lter formulation. Let the dynamjcal system be modeled
as:

]
x = £ix) * Glx)u <+ Gi{x)&.

wrers L% ja tre geterminlctic (mean) part 07 the
ingut, L .8 zers 1ean ynnLl noi%e, and n LN defined in
Jult (ASe a9

-1
hi., «M (. =n).

. -1
Nyl e ()

tet R Sit-v) = E{v ft)v (1)] b8 the covariance matr:ix of
the sénsers for ,.‘ ana'let G6(t-1) = E(L (t)E(1)] ve
the covar:ance matrix of the actuator. The propagat.on
2rUOr MALCIX i3 Zdefined by P, wnich sat:sl:es the
‘eilowing dufferent:al equat:on:

: 3t ar .T ° ° T 3h.T _-l.3n.
PoelZiip.prdl ot L ogrageia ! - ppERT p7 A
aX . ax - axX X ax X

ox x
and x can be 2xpressed as observed,

X = fix) o+ Glx)u <+ K(y=n(x)).
y = hix)

whére X ia the extended Kalman gain of the oraerver ang
18 cel.ned aa:

A newly dZeveloped procedure {Fagal;, Gardner and Dwyer,
1965} tased on a change Of variables in preliminary
atudias gave us a better time of computation and
therefore a more reliacle set of observed gata. Tr:s
procedur= .3 outlined next.

Feeatack Linearijzed Procedure:

The idea is %o change the state configuration of our
original system which has the particular form Selow:

X" Ry x,
Yy =y vy
¥, " hz(x2 . vz)

by using the change of

L]
variables x, = x , x_ = Fl(x‘)xz.

1 1 2
ut = x = Ey(0u 2,(x) ana
y; - h1- vy, y; - hgl(yz) we get
e

)
X =yl e gt ,

Wheére £' = F1F £ and v, = F v, S0 that the covariance
of €' ia approXimated by

- - ~e -
Q' = F ix))F,(x)QF,(x) 'Fy (x))

A
while that for vy ia approximated by
' - I SR
R1 - F1\x])R1r1(x) F1(xl)

Then the new error covariance matrix propagation is
derivec ‘rom the following qifferential equation:

(o] (ol (o]
Pefojfo]lPep{1]{0]) e« [1]Q(f0] (1))~

P01 LSS
(2]}

4
0]

0

s O

—ra
—oa
o

N
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LAY IR

the ofas~vad deformation State 19 propagated as {3i0we:
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AESTRACT

(.

Cormnute

torques for pointing and :tracking reguire compensation for
slew-induced structural, forebody/aftbedy, or optical train alignment de-
formztions. Thus even if only line-of-sight variazbles are to be ccmmanded
vet full state feedback is needed, with consequent high bandwidth control
requirements. The solution investigated here is to decouple the unwanted
deformation state by fesdforward of the line-cf-sight slew dynamics into
the ceformation controlforces or moments, for an apparatus consisting of

a mirror mounted on an optical bench, that is itself mounted on a rotating
table. Adjustable elastic interfaces are used to model slew-induced de-
formations as angular differences between mirror mounting, optical bench
and rate table. Low bandwidth control with fewer actuators than degrees

of freedom is shown to be possible, by correcting the computed torques so
as to force the interstage angular differences (stancding for slew-induced
deformations) to evolve in a "slow 1int23ral manifold wherain they are mod-
elec. as functions of the mirror pointing angle. Simultaneous amirror point-
ing and indenendent rate table pointing is also shown to be possible, which
represents the situation of pointing an instrument elastically mounted on

a maneuvering platform. Compariscns with P[D and LNR methods are also made.

TANWD
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[. Introduction

Spacecraft flexible modes have often challenged automatic
control system designers. For example, unmodelled antenna
deformations caused Explorer to eventually tumble out of control.
Often, the solution used for such problems was to make the structure
sufficiently rigid and/or the control slow enough that the flexible
modes would not be excited by the controls [Ref. 1]. However, this
option may not be available in the future for some spacecraft, given
the current interest in the use of larger, lightweight space structures
with correspondingly lower natural frequencies. The presence of
flexible modes that are excited by the controls thus poses a problem.

The solutions to this problem may be split into two classes. In
the first class, there are controls available to be dedicated to each of
the flexible modes. In the second, more likely case, some of the
modes do not have a dedicated controller. This paper applies a
method called deformation shaping to a particular problem of this
latter case. This method was adapted by Dr. T. Dwyer, as an
extension of singular perturbation techniques, such as by Kokotovic
(Ref. 2], initially used in control of robots with flexible joints by
Spong [Ref. 3]. The method modifies slew induced deformations to
produce, in some sense, better dynamics.

A variety of options are available for the first class of solutions.
If the flexible mode-pointing control interactions are ignored, a
simple PID control of the modes may be attempted, but the results
are often unsatisfactory. A somewhat more sophisticated solution is

the use of a Linear Quadratic Regulator (LQR) design. Another
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possible solution is to rigidify the structure with some application of
the controls. After an initial transient, the structure will then be
effectively rigid and have no flexible mode-pointing control
interactions. This would be ideal, but the type and/or number of
actuators rarely allow this control. This class of solutions will be
used as a basis of comparison for solutions in the second class, for
which all controllers are not available.

The second class of solutions is less well developed. The
problem of noncolocated sensors and actuators greatly complicates
matters. PID control does not work, and rigidifying control does not
as well. It is possible to formulate an LQR problem, but there are
some drawbacks to this. Many other solutions are currently
proposed, but none are accepted by everyone yet. A solution for a
problem in which all controllers are not available will be done using
the method of deformation shaping. This will then be compared to
control solutions for the same problem in which all controllers are !
available.

In addition, there are additional considerations particular to
this problem. This problem arises from a laboratory model to test
precision pointing control methods. Thus, several constraints and

additions peculiar to this setup and use are imposed. These include

desired performance, actuator and sensor dynamics, and equipment
limitations.
The problem posed is first formulated and detailed. Next, the
basic theory involved is discussed. The necessary equations are i

derived, and the control form is specified. Then the control is




designed. The effects of various control design choices are explored,
as well as the response of the system to various inputs. Parameter
sensitivity and noise effects are briefly discussed, and the control

solution is compared to various other solution types. The results are

summarized, as well as possible topics for future examination.
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II. The Problem

2.1 Problem_Formulation

It is desired to make the end of a flexible insttument follow a
commanded trajectory as quickly and accurately as possible. The
most likely real world counterpart is rapid retargeting slew
command. Another possible mission is tracking, but this presents
some difficulties. Two scenarios are examined. In the first scenario,
only the instrument deformations are shaped or suppressed, and the
vehicle trajectory can be commanded separately from the instument
trajectory. For the second scenario, the entire vehicle and
instrument system has its deformations shaped by the control.

Controls for the first scenario are derived, applied, and their
performance analyzed. This is then done for the second scenario.
Both scenarios then have their performance compared to various

other more common methods.

2.2 Laboratorv._Model

The laboratory model was configured to represent single axis
dynamics of a multibody spacecraft. The system does not strictly
resemble the dynamics of any spacecraft, but can be used to make a
meaningful comparison between control methods. lﬂ

The laboratory model consists of three main bodies as shown in
figure 1. The pointing mirror represents the end of a flexible
insttument. The optical bench represents the base of the flexible i

instrument. The rate tabie may be considered the rest of the vehicle,
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such as propulsion package, or a connection to the rest of the
spacecraft.

The rate tacle and the optical bench are isolated from one
another by an air bearing, with springs mounted between them to
provide an elastic link. Physical considerations limit the total angle
difference between the rate table and the optical bench to about five
degrees. Two Kimco linear actuators mounted between the two
bodies act as a torque actuator. Another actuator, available for
control and/or disturbance injection, is the rate table itself.

The optical bench and pointing mirror are also elastically
linked through springs, and an Acrotek DC motor connects the two
bodies, providing another actuator.

The model's springs were chosen to give the vehicle "typical”
spacecraft natural frequencies.[Ref. 4] A low frequency mode at .4
Hz simulates very flexible components such as solar panels. Another
mode at 1.5 Hz represents some other structural flexibility.

The laboratory model thus imposes several constraints which
are not present in the real system, but must be satisfied in the lab.
The most important effects come from the angular difference

constraints and necessary component simplification.

2.3 The Mathematical d

The mathematical model is an idealization of the laboratory
model, and thus only approximates the laboratory mode- It is
depicted in figure 2. The sensors are assumed to be perfect, and the

actuators are assumed to follow standard dynamics with certain




parameters, as detailed below. Each body is assumed to be rigid,
connected by elastic links. The links are assumed linear, and time
degradation of any component is not considered.

The actuators have several constraints imposed on them as
shown in figure 3. There are physical limitations in maximum torque

available,
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bandwidth, and stroke. The problem constraints on maximum torque
and bandwidth are more stringent than the physical limitations, so
the physical limitations have little effect. The stroke, however, is a
major physical constraint, and is the most significant laboratory
mode!l constraint. The motor between the pointing mirror and optical
bench has a range of forty-five degrees. Since the maneuvers
simulated will be less than or equal to twenty degrees, this
constraint has little effect as long as there is little overshoot. Due to
the linear, instead of rotational, nature of the Kimco actuators
providing T;, there is a maximum permitted angular difference of
about five degrees between the rate table and optical bench. This
greatly limits the allowable controls.

The control torques are assumed to be produced by standard
PM DC motors, in linear or rotational form. These motors also have
controllers so that they produce constant torque output for a
constant input signal. Otherwise, the steady state output would be
constant rotational or linear speed, and zero torque. The resulting

transfer functions for the compensated actuators are

2
TDACIUAL(S) _ 100x
2 2
TD@MAN:E(S) s +20rs+100x (1]
Tinas) _ 29576
2
Timoweeds) 2051935429576 2]




YO 7000
2
T2 cneweedS) (2, 166.675+5991.4 3]

The details of how these were obtained are in Appendix A.
These actuators have only been compensated to produce a constant
output torque given a constant input. This compensation does not

implement any control scheme on the model.

2.4 Equations of Motion

The equations of motion of this system are

1,8;+k28,-6)) =T, [4]
1,8,+k2(8,-0,) +k (6,8 =T,-T, (5]

where

angle of rate table with respect to fixed point

<
-3
]

81 = angle of optical bench with respect to fixed point
82 = angle of pointing mirror with respect to fixed point
It = moment of inertia of rate table about vertical axis= .417 Nmsec?
I;=moment of inertia of optical bench about vertical axis
= 1.627 Nmsec?
I= moment of inertia of pointing mirror about vertical axis

= .863 Nmsec?

10
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k; = spring constant for link between rate table and optical
bench= 2.27 Nm/rad
k2 = spring consiant for link between optical bench and

pointing mirror= 49.8 Nm/rad
Tp = disturbance torque due vehicle maneuvering torque
T, = contol torque 1

T, = control torque 2

These equations can be expressed in matrix form too, but that

is used only for Scenario B (below).

The system, actuators, and controllers are connected as in the

matrix block diagram shown in figure 4.

Figure 4
Commanded
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[II. Theory

3.1 Introduction Theor

The equations of motion can be transformed into the singular
perturbation equations of motion. They are called this because some
of the variables represent parasitic perturbations of the pointing
dynamics. There are different possible sets of these singular
perturbation variables. However, there are two best choices.for this
problem, depending on what dynamics or responses are desired and
what controls are available. Two scenarios (i.e. choices of
perturbation variables) are considered. The first one consists of the
case where only the instrument (i.e. between the mirror and optical
bench) deformation is considered a perturbation variable. The
second scenario is the case when both instrument and vehicle
mounting (i.e. between the optical bench and rate table)
deformations are considered perturbation variables. The first
scenario allows the instrument to slew and point in a given manner
while the vehicle may be moving in some other manner. The second
scenario can be interpreted as making the instrument slew and point

when the vehicle orientation does not matter.

3.2 cenari Perturbation Equations of Moti
This scenario is simpler algebraically since there is only one

perturbation variable. It is considered first since the derivation is

easier to follow and less cumbersome.
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For the first scenario the deformation variable choice used is

z = k(6 - 82) (7]
with the definitions:

¢ =(02-61) (8]

€ =1/k; (9]

The singular perturbation equations of motion are then
1292-2=T2 [IO]

52+(L+_1_)z+5.15_1_z+k_1¢=h- _1_..+1_)T2
I Iz I

I I I I (11]

I-I'@T:TD-T1+k1¢+EkIZ [12]
The variable z is proportional to the deformation between top and
bottom of the instrument and the variable ¢ is the coupling term

between the instrument dynamics [10],[11] and the vehicle dynamics

[12].

3.3 The Integral Manifold
The integral manifold approach and its applications are more

rigorously discussed in [Ref 5,6]. This is a brief overview of useful
ideas.

The integral (or slow) manifold is a certain lower dimensional
manifold of the system dynamics which relates the system states and
depends upon the controls and the singular perturbation. For some

appropriate choice of controls, if the manifold is reached then the

13




system will remain on the manifold. The appropriate controls can be
found by solving a PDE for the manifold.

The perturbation variable can be thought of as the sum of two
terms; a term on the manifold, and a fast remainder term.

Z=zpM + 2 [13]

The faster the remainder term decays to zero the better, since then
the integral manifold determines the dynamics. In general, the fast
term often decays due to damping in the system. However, for this
problem the damping must be added. This is done by a fast control

that is detailed below.

3.4 Time Scale Separati

In this problem two different processes are occurring. First,
the dynamics are quickly decaying to the integral manifold
dynamics. Meanwhile, the manifold dynamics are "slowly” reaching
the desired dynamics, as explained below. This leads to a separation
of variables based on their time scale. In the fast time scale, the
"slow” variables are changing so slowly that they are approximately
constant and have little noticeable effect if the "fast™ dynamics are
fast enough. At most, the fast dynamics will see a constant
disturbance. Looking at the slow time scale, if the "fast”™ variables
decay fast enough, the most effect they have on the "slow"™ variables
is a short, transient disturbance input. When considering the
variables in the two time scales to be essentially independent,

equation [13] can be used to rewrite [10], [11], and [12] as

14




e:fif*(l; + (- {;)L—)za =A+II—1M ”
l 1

128 - IM = Tzclov (+zf) [15]

M+ (_l__ +—1—)Z M + k1¢ = :lov (J_ + )thlov
I, I (16]

¥

(ko ek, _Tp Ty L EK%

T Zim =
Tr ITA I (17]

It Ip
where A = a small disturbance input, Tp = Tpsiow, T2 = Tasiow, and

T1 = Tistow + Tifast (18]

since T; is assumed to be the only control with high enough
bandwidth to have a fast control term. The zf terms in [15] and [17]
are transient disturbance terms which affect the slow dynamics and
their impact must be minimized by the slow control. In addition,
[14] gives the dynamics of the fast variable. This equation is used to

design the fast control Tigag to drive z¢ to zero as quickly as possible.

3.5 East Control

It is desirable to use feedback to generate a Tifas; to drive z¢ to

zero. There is a choice, however, of whether to feed back only the
fast part of z (zf) or all of z. Since a high pass filter would probably
be needed to measure only z¢, all of z will be used as feedback.

Therefore, fast and slow terms will arise from this feedback. Only

15




the fast terms will affect the fast dynamics, as discussed above. The
slow terms will affect the slow or manifold dynamics. This control is
called the fast control even though it affects the slow dynamics,
because it is the only control that is used for control of the fast
dynamics. The sensor dynamics of this feedback are neglected.
There are many possible choices for the control form but a
proportional-derivative (PD) feedback controller will be used

because it is the simplest that can do what is required. The control is

of the form
T; =T, -e(a;z + 2p2) [19]
so that
Ty, = -€aZ¢ + 35Z¢) [20]
Ty, =T -e(a;zpy + 2521y) [21]

where T; tilda is used for slow control. Then using [20] the
compensated fast dynamics are

- ' k
E[Zf+allff+(a°;; 1 +::—(Il-l-+11—2))zf] =A

where A is a small disturbance input

[22]

The gains a; and ag may now be chosen for the desired fast
dynamics.. For example, the fast controller is chosen to make the z¢
dynamics behave as a system with damping ratio z= .7071 and

damped natural frequency © as below, where uf= A/E.

. . 2
zf+202p+20 zg=ug (23]
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This occurs when the gains are chosen as

: =20’Il

ay = 26211 -

-(ll_;_'.lz.)kz

[24]

(25]

Since € is small, ug is possibly a significant disturbance input.

Thus, for nonzero A there may be a significant steady state error in z¢

for some situations using the PD control. This error did not destroy

the performance or stability of the control, but its effect, if any, is not

analyzed in this paper.

3.6 Singular Perturbation Expansion

The equations describing the slow dynamics, including the slow

feedback component of the fast control but neglecting the fast .

transient disturbances are

1292- ZIM=T2

a'z'm+i5-a1im + (-“"51ﬂ+L+EQi oy

1 L I, I

The vehicle dynamics are

17
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+k_141_T (J_+J_ T,

I L I [27]




To solve [26] and [27], z;m must be found.

One method of solving for zjy involves expanding zpyv, Ti, and

T, in power series of €.

2
Zpg=2ZgtE€Z  +E€E 25+ ... [29]
~ ~ ~ 2~
T =Tjg+eT;1 +e T2 +... _ (30]
2

Substituting these into [26] and [27], and equating terms of equal

power in € results in:

0 .
Fore : 1262- 20=T20 [32]
+1
Z°+ TZO
1 ' |
Fore : z; =Ty, [34)
. ay. ay . k _1_ .L
7o+ Hzg + (20 + X))z, + (L + L)z Ta1
I (11 11) ° (Il Iz)1 - [35]
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2
Fore: z2,=Tyy [36]

. . k T
Z1+ % zl+(;;ill+ #)zl+(ill—+iL)zz = lel - (Ill—-f- IJ;)Tzz

(37]
etc.

For the vehicle dynamics, no singular perturbation expansions are

used, since the effect of vehicle motion is regarded only as an

exogenous input to the instrument slow dynamics. These equations

can be used to determine the desired instrument slow controls, then

the vehicle controls.

A Rigidifving or Deformation Suppression control can be found
for the instrument if T, is not equal to zero. This rigidifying control
must drive the instrument deformation (zjp) in a short time to zero
and keep it so. This means that the manifold desired is z;pm=2z9 + € 21 +
. .. =0. After decay of the fast dynamics, this manifold will be
reached and the instrument will act as if it were rigid.

An obvious solution to this is zg=z1= ... =0, which forces setting

T1;=T2i=0 for i=1,2,3,... ;indeed, for this solution, [32] thru [33]

become:
For €0: 1,8, = Tag [38]
~ k
0 =(_1_ +_l_. 20 - -l—Tlo +—1-¢
I I I I (39]
19




For el: 0 = Ty (40]
Oz(_l_.+_l__ 21-111.
I I, I [41]
etc.

From these equations, one can design controllers using any means for
desired performance, robustness, etc.. This is done in Appendix C.
However, deformation suppression can be done only when there are
as many co-‘rols as modes: all three (Tp, T, T2) controls must be
used.

For a Deformation Shaping control, it is not desired to drive the
deformations to zero, but rather to shape and use them. For
example, if T2 is not available to directly affect the instrument
deformations, the deformations (z) can be shaped to be expressible in
terms of the pointing dynamics ©, and achieve the desired response.
Since deformations are needed to exist after the fast dynamics have
decayed, zjy is not equal to zero. However, by examining the
equations [32-37], one notices that with zi=0 and Ti(.+)=0 (for i>=1),

a solution can be found for zy, T10, T;1. The equations are then
1282=2¢ [42]
(J_ + _1_ + _k_l_ ¢ = I.LQ.

L Iy I I [43]
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zo+iLzo+(39+—kl)zo=I—U-
I I I [44]

3.7 Slow Control Design

Using [24],[25],[30],(42].[43], and [44] we can write (in the

frequency domain)

To(s) = Gy ()@ 4(s)+k 14(s) [45]

where

_k 1 -
Gi(s) = ——L‘
! I1121s2 (s2+ 208 + 202)) [46]

To exactly model and control the dynamics, up to fourth
derivatives (jerk rate) of ©; would be needed. Since these are
unlikely to be available as feedback, a form can be found only
requiring higher derivatives of a commanded trajectory. This is done

by using the model
~ -1 . .
T1(s) =Gy (s)8(s) +k14(s) +H1(S)(92(S)-9 2(S), (47]

where H;(s) is a controller designed below to make ©, follow its
commanded trajectory. This model uses commanded feed foward of

G1-1(s)©2*(s) and the decoupling term k;¢.
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In a fashion similar to that for Ti(s), Tp(s) can be expressed as

Tofs) =I5 O(s) - (%(als3+ (arirk ] - Gi‘(s))@§<s>
2
- {il (a;s+ag+k;) s2G(s) -I}Hl(s)(ez(s)-ez(S))
2

+ Hp (s)\©7 (s)-01 (5)) (48]

where Hp(s) is a controller designed below to make ©t follow its
commanded trajectory. One major difference between the dynamic
models is that the model [47] was free to be chosen, but once this
model was picked and the control designed using [47], the model (48]
for Tp was completely specified except for Hp(s).

The slow controllers may be designed various ways. The use of
classical SISO (single input single output) design can now be done
with our new system if care is taken. This will be done for
illustrative purposes, but undoubtedly a better control design could
be found.

It is desired to have the slow control drive the actual trajectory
to the commanded trajectory. The slow control is designed to drive
this error to zero. This is not to be confused with the fast control
driving the off-manifold dynamics to zero. The deformation
dynamics (not error dynamics) resulting from the design of the slow
control are the slow manifold.

The model [47] results in the transfer function form given in

figure S.
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> H (s) —» G(s) >

Now a simple regulator design is done to find H;(s). It was found

that the simplest form able to stabilize the system was

2
I, K(s +ms+mg)

I
H =
1(s) Y "

Once this form was chosen, the parameters were then selected. The
final design chosen consisted of b=m;=0, my=62/4. This corresponds
to a controller with two zeros at -G/2 and a pole at -6. K was chosen
from the root locus (see figure 6) for good closed loop pole locations.
The choices used for K are detailed in Table 2. These situations in
Table 2 will be explained in greater detail below. In addition, the
effect of K on the time scale separation will also be discussed below.

The design of Hp(s) was done in a similar manner. The same
block diagram as figure 5 is used, except the plant was

Gp(s)=It(s)/s2 and the controller Hp(s) was found to be:

= 0]
Hp(s) ZITcD(s + 5 ) (50]
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Table 2

Choices used for K

Situation Choice for K
Low BW 50
High BW 1429
Low BW, larger separation 29
High BW, larger separation 715

The parameter c¢p was found to give acceptable performance when it

equaled about .28 o, and good performance when it equaled about o.
Undoubtedly, a better controller could be found, but this one
sufficed.

After the control design is done, the resulting controls are:

T = al(érél) + 30(62-81)+1-1L’-—d—2-(é; + 20@5 + 20295)

k2 442
IR (60 64 (m .-b)[03-02) + YI) + k1o
e (51]

Tp= % (65 + 265 (61 -61) + 2002 (05 1)
k—zzf(aleﬁ i+ 30) ©3) - —IEZ—-(@z 62+ c03-02) + v

k—l(al(ez 92) +yy+ )’3)
2
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where vy, y2, and y3 are found from

yi= -by; + 61(95 -0,) (53]
y2=-by2 +C2(82-82) [54]
¥3= - 20y3 - 20%y; + 03(92 - éz)+ 64(9; - 92) (55]

and ¢y, ¢y, ¢2, c3, and c4 are detailed in Appendix B.

3.8 Scenario B Derivation

The derivation for the scenario in which the deformations of
the entire system are shaped is very similar to the derivation for the
previous scenario. In this case, however, there are two perturbation

variables defined(A perturbation vector).
e[t
zZy/ (ki (0,-8)) (56]
The resulting singular perturbation equations of motion are

1292 +ZZ=T2 [57]
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elrz; + 11_4;_11'_)7_1 'I—T'Z=k1h+—IT-)T1 - LT, - Tp
I I I 1 (58]
g8l - 124 (Lt ), _ L (L +Iz)q-
Il I I, I [59]

where 8=k;/k; and €=1/k; with k;<kj. Using the fast control

T = 1k12g) kzaon[ (91-87) }-[an a12][ (61-67) J
(82-81) (82-01) J [60]

results in the fast dynamics having four poles at -w. If ag;, agz, aij,

and a;; are chosen as follows:

4
w Illzl'r
a01 = -
k k(T +15+1p) [61]
3
4w IIIZIT
a5 =
k 2(I 1+12+I-r) [62]
I 4I I5(14+41
20y =1 +1_1_ 6kw 11+w21 A11+I7)
2 2 kz(I 1+12+IT) [63]

3
_ 4w IIIZ(II+IT) } 2W11

a2
kz(lﬁ-rz'{-r'r) [64]
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The resulting slow dynamics are again used to solve for the slow
manifold through singular perturbation expansions. The expansions

used are

2
Zpa =29 t€2 +€ Z7 +. .. [65]
~ 2
T1=T10+8T“+8 T12+... [66]
2
T2=T20 +ET21 +£ T22 +... [67]
2
TD=TDO +€TD1 +£ TD2+' . [681

Substituting these into the slow dynamics equations and equating

equal powers in € results in the equations

1,85 +[0 1}29 = T (69]

L{ (1+I1)(1+ag;) (I1+I1)agy-It }
I %

-12(1+a01) Il+12(1°302)
- Lt 10t L 20 - : DO
Il -Iz Il Il+12 0 [70]
[0 1]z, =T, (71]
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I+ 0 | [(I+Ipay,
0 +
O 512 -Izall

1 (I+Ip(1+ap;)
I, -Iy(1+agy)

(I1+Ipda,; s
-128312

(I+IDagy - Ip
Il+I (1- aoﬁ

[ 1+IT
l+12 [72]

If Tp, T, and T, were all available, a rigidifying control could

be found using a process identical that was used for the previous

scenario.

be examined for this scenario.

before with

2i=Tp,(i+1)=Ti,q+1)=0 for i>=1.

be written as

- [0 1)z, =10,

1| (I1+Ip(1+agy)
I -I(1+agy)

However, only the deformation shaping case for T:=0 will

With T2=0 a solution can be found is

The resulting equations can

- [73]

(In+Ipage-IT
Il+12(1-302)

- l II+IT)I' (Iﬁ
= 10 © DO
11( 12 0 [74]

It 0 (11"'11')311

-Isay,

gl

29

(I,+1pda, 2

'125312

(75]




3.9 cenario B Slow ntrol_Design
Proceeding as in Scenario A, [74] is used to substitute in for z
into (73] and [75]. Choosing T;¢=0 (otherwise free) , [75] can be

solved to find Ty, Tpo, and Tp;. The resulting slow dynamics are:
Gp(s)®2(s) =Tp (76]

G1(s)@2 (s) =T, (77]

For the fast control gains used in [01] - [64], the expressions for Gp(s)

and G;(s) are:

Gp(s) = 1
I, +I + I—;-)(—ﬁ—s2 +1}s2
w2 [78]
Gi(s) = 1
I;12(s - 20w) s3 [79]
Again, a control is sought of the form:
To(s) = Gik(5)@3 + Ho(s) (€3 - ©2) (80]

Unlike Scenario A, the use of this control law completely determines

the other control law as:

Ti(s) = Gi(s)0} + G.(5)Gp(s)Ho(s) (@3 - ©2) (81]
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The slow control design used in Scenario B differs from
Scenario A. Instead of using a root iocus, the closed loop poles of the
8:-8.° error dynamics were placed. The slow control design chosen

placed all five poles on the real axis at -A. The form of Hp(s) was

chosen as the same form as in (49]. To achieve this, the controller

parameter values were b= 5i, mg= A/40, and

64 10 (82]

The parameter 1/A represents the time constant of the error
dynamics. However, in order to place the poles in this manner A was

found to be related to w by

J60 : [83]

Thus, the time scale separation was fixed at approximately 7.75 and

could not be adjusted as in Scenario A without redesigning the slow
control. Consequently, the time scale separation was explicitly stated
but for a given fast dynamics speed w, the slow (error) dynamics
were much slower (at least twice as slow as Scenario A slow
dynamics). This caused the time response for Scenario B to be much
worse than the other methods. With a better slow control design this

method would perform about as well as Scenario A deformation
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shaping. A lesson leamed from this is that the slow control design
greatly influences the deformation shaping performance.

The controls resulting from the design can be rewritten as

Ty =T+ I—le-(‘d-z—(; +Cs @;) + 4013(92 - @;))
2 \de?

+h_1_2{4ox3 ((c5+m1+b) (@2 - 95) Y4t YS)}
k; (84]

2 . .
TD=(11+12+IT){§— ©: .o
de? \10a°

4K(Il+12+h-) {co (@2 - 8;) + Y6 } . (85]

- 0o, - 63)

where y4, ys, and yg are found from solvir,

)}4= -b}'4 + Cq (@2 - 8;_) [86]
Gs= 1007 yg + ¢ (63 - 1)+ c5(03 - 63) (87]
Y6= -bys + ¢ (@2 - 95) [88]

and ¢, c3, Cs, C6, C7 and cg are functions of various system parameters
as detailed in Appendix B. These controls result in a non-minimum

phase controller with one zero at +.233A.

32




IV. Simulation

4.1 Simulation Details

The simulation was done on a CDC mainframe computer system.
A simulation package called Eclectic Simulation Package (ESP),
developed at The Aerospace Corporation, was used. Various ESP
commands were converted by the ESP precompiler into Fortran V
source code, and then executed. The dynamics were all simulated in
state space form with integration performed by a Runge-Kutta
Fourth Order fixed step algorithm. The fixed time step used was .001
seconds. The output was produced on an IBM 3820 printer. An

example listing of the Fortran V program is listed in Appendix C.

4.2 Results for Scenario A Deformation Shapin
The single deformation shaping case is examined with two

types of commanded trajectories 8;*. These are

82* = A(1 - eV7) [89]

82* = Bsin(wt) [90]

The commanded trajectories 6r1* are usually equal to 82*, and A=.087,
B=.043, t=.5, w=2n unless otherwise specified. The variable t is time
in seconds, A and B are amplitudes in radians, t© is a time constant in
seconds, and w is frequency in rad/sec.

Both the slow and fast control bandwidth can be varied by the

choice for o, the damped natural frequency of the fast dynamics. The
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slow control bandwidth can be adjusted through a parameter K, a
gain in the slow controller. This K also affects the time scale
separation.

The system response and performance varied greatly
depending on what bandwidth was chosen. The "low" bandwidth
case was for ¢ = x, with K values of 4 and 7. The "high" bandwidth
case was with ¢ = 3x, with K =100 or K = 200. The K =4 and K = 100
runs represent time scale separations of about a factor of three; i.e.
the fast dynamics are three times as fast as the error dynamics. The
K = 7 and K = 200 cases represent the fast dynamics being about
twice as fast as the error dynamics.

For an exponential command trajectory as defined above for 6,*
and 67°*, comparisons can be made between different controller
bandwidths and different time scale separations for the runs
summarized in Table 2. It is evident that the required control effort
(peak torque) increases dramatically for a controller bandwidth
increase. However, when the time scales are more widely separated,
the maximum torque increase is not quite as dramatic. Comparing
these torque outputs with the constraints from figure 3, one notices
that the high BW controllers require too much torque for the lab (the
high BW three times separation case might be possible, but it is

pushing the limit of actuator capabilities).
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Maximum Actual Output Torgue

Table 2

for Exponential Commanded Trajectory

2X time scaling 3X time scaling
Torque
Low BW High BW Low BW High BW
TD 2.1 Nm 24 Nm 1.4 Nm 9 Nm
T 5.2 Nm 115 Nm 2.1 Nm 11.5 Nm
1
Notes

1. Low bandwidth controller uses o=x

2. High bandwidth controller uses o= 3

3. For 2X time scale separation, K=4 (low BW), K=100 (high BW)

4. For 3X time scale separation, K=7 (low BW), K=100 (high BW)

5. All initial conditions equal to zero

Similar runs were made for the sinusoidal commanded

trajectory and the control torques are summarized in Table 3. As

before, the required control effort was dramatically larger for the

higher BW controllers, and required too much torque given the limits

of the lab equipment.

35




Table 3

Actual Qutput Torque (Nm)

For Sinusoidal Commanded Trajectory

2X time scaling 3X time scaling

Control
Low BW | High BW | Low BW | High BW

TD(max) 3.5 Nm 40 Nm | 3.25 Nm { 16 Nm

TD(after 3 Nm 3 Nm 3 Nm 3 Nm
transient)

T1 (max) 5 Nm | 190 Nm 4 Nm 45 Nm

’I‘1 (after

. 2.5 Nm 2.5 Nm 2.5 Nm 2.5 Nm
transient)

Notes
1. o=n  for low BW control
c=3r for high BW control
For 2X time scale separation K=4 (low BW), K=100 (high BW)
For 3X time scale separation K=7 (low BW), K=200 (high BW)

e

All initial conditions equal to zero
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The higher BW controllers cost a lot more control effort, but
they gave a faster response, as expected. The approximate 2%
settling times for the exponential and sinusoidal commanded

trajectories were

Deformation Shaping

Time Response

2% Settling
time (sec)

Case

low BW, 2X sep. 2
high BW, 2X sep. 0.5
low BW, 3X sep. 4

high BW, 3X sep. 1.5

One reason the response times are longer for the larger
separation cases is that the fast dynamics are the same for both time
separations, so a larger separation means slower error dynamics.
The time response benefits of a higher BW control are evident, but
then so are the control effort costs.

The deformation shapes are shown in figures 7 and 8 for the
exponential and sinusoidal commanded trajectories, respectively.
Both are for 6=3.6%,K=7, cp=n, and zero initial conditions. Notice that
the deformations never die out for the sinusoidal case, but instead

make ©, follow the commanded trajectory.
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The effect of nonzero initial conditions upon the control was
examined. In general, the initial conditions could help or hinder the

controller to a significant degree. An example is the case with

0=3.6x%, K=7, cp=n, an exponential commanded trajectory, and initial

condition 6,(0)=.021. Some of the response characteristics are

contained in Table 5.

Table 5

Initial Condition Effect on Response

Response without | Response with
Category initial conditions | initial conditions
'I; (max) 5.2 Nm 1.5 Nm
TD(max) 2.1 Nm 1.5 Nm
2% settling time 2 seconds 1.5 seconds
Largest |el- G_rl .035 radians .115 radians
Max error (6, 92') .023 radians .011 radians
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This initial condition actually helped the response (for the most part)

in.this case. However, the [6,-87! stroke constraint was violated
when the initial condition was added. The initial condition caused an
increase in the maximum 10;-81| about four times larger than the
case with no initial condition. The solution was to speed up the
bottom controller (Tp) to Cp=3=, reducing the maximum 108;-87I to
.024 radians while raising the required Tp to only 2 Nm. However, it
was made evident that an initial condition could have an
unexpectedly larger effect upon the performance.

Parameter sensitivity was given only a cursory examination.
The effect on the response was observed when the estimated value
for Iy differed from the actual value for I;. As expected, the
response was not as good. The results are summarized in Table 6 for
the case of K=4, 6=3.6n, zero initial conditions, and sinusoidal
commanded trajectory for 6;* and 6t°.

The error between the commanded and actual trajectories
increased a greater percentage than the error in the parameter
estimation, so the controls are relatively sensitive to parameter
variations(at least for I;). The parameter I, affects the slow control
mainly as a gain. Thus, as long as there is sufficient gain margin in
the slow control design the control is stable. However, the feed
forward terms using I, cause a persistent error for the sinusoidal
trajectory. (The correct steady state value is achieved for the
exponential trajectory due to the integral part of the control).

Various other parameters may have greater or lesser effects.

For example, if the estimate for k; varies from the actual value, the
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decoupling control terms do not completely decouple the systems,
and correction might be required. The parameter sensitivities need

to be explored in much greater depth.

Table 6

Effect of Parameter Estimation

Error _upon Performance

Category Lact=™ Izest | l2aee™ 1-2Laest | T2aei= -8lpes,

TI (max) 3 Nm 3 Nm 2.3 Nm

TD (mav) ) 3.25 Nm 3.8 Nm 3 Nm
Error "aiter™ transient 0 012 (28%) 014 (33%)

Next, the effect of sensor noise was studied. Gaussian white
noise excitations were added with standard deviations of 1% and 5%
of the input signal. The case used was the exponential commanded
trajectory for 05° and 071°, 0=3.6%, K=4, and initial condition 8;(0)=.021.
The error 92-82° is shown for the two noise levels of 1% and 5%
respectively in figures 9 and 10. It is evident that the response is
fairly good, the maximum torque magnitudes are still about the

same, and the 10;-61! response was not pronounceably increased. The

performance for the depicted runs is summarized in Table 7.
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Table 7

Effect of Noise upon Performance

Quantity No Noise \T;m=bf;;§e “(/i;hzl\;‘;ge
’I‘I (max) 2.1 Nm 1.5 Nm 1.8 Nm
TD (max) 1.4 Nm 1.5 Nm 1.5 Nm
Error "after” transient 0 25 % 6 %
2% "Settling” Time 1.5 sec 1 sec 1 sec
18, - 8 max .11 rad 15 rad 12 rad

Note: The variable ¢ in the table is the standard deviation of the noise

4.3 Results for Scenario B Deformation Shapi

The deformation shaping Scenario B performance was worse
than Scenario A in most respects. Again, this was due to the slow
control design, and not any intrinsic flaws of the method. The

performance is summarized in Table 8.
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Table §
Scenario_ B Deformation Shaping
Performance Summary
Category Low BW High BW
’I‘L’_max) 11 Nm S Nm
("after” 7 Nm 3 Nm
transient)
’I; (max) 35 Nm S0 Nm
T, (after’ 15N 15 N
transient) ) m ) m
2% settling time 15 sec 6 sec

These results were with a sinusoidal commanded trajectory. The low

bandwidth control used w=3.1x, and the high bandwidth control used

w=7.75r.

For Scenario B, increasing the dynamics "speed” did not

increase the torque cost nearly as much as in Scenario A. The control
for Tp actually decreased for the higher BW case.
because the control T; for the lower BW case could not keep up with

the commanded trajectory as well as the higher BW case, and needed

more help from Tp.
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V. Comparison of Deformation Shaping with Other Methods

5.1 Introduction mparison

Various other methods of control design were used to obtain
solutions for the problem. Most of these solutions, however, used all
three controllers while the deformation shaping solutions used only
two controllers.

Since the slow control design for Scenario B adversely affected
the performance, all comparisons will be made with the deformation

shaping solution of Scenario A.

5.2 Deformation Shaping vs. Rigidifyin n

The rigidifying control is detailed in Appendix D. It was
examined with the same fast control speed constraints as the
deformation shaping control. The rigidifying control low BW case
had w=3.6r, A=x and the high BW case had w=10.8x, A=3x. The
rigidifying control time scale separation was chosen as three for both
cases. This is compared to the deformation shaping case with a time
scale separation of three.

The maximum torques required are presented in Table 9 for
the case with no initial conditions and exponential commanded

trajectories.
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Table 9

Deformation Shaping vs. Rigidifving

Performance Comparison

Deformation Shaping Deformation Suppression
Category
Low BW High BW Low BW High BW
T, (max) 1.4 Nm 9 Nm 1.3 Nm 3.3 Nm
T, (max) 2.1 Nm 11.5 Nm 18 Nm 6.5 Nm
T2 (max) 0 Nm 0 Nm 5 Nm 1.5 Nm
2% settli
0 .se g 4 sec 1.5 sec 2.5 sec 5 sec
time

The required torques for the low BW are very similar, and the

settling time isn't even twice as large.

The higher BW controllers

show more difference in required torques and settling times.

However, considering that the deformation shaping is using only two

controls while the rigidifying is using all three, the deformation

shaping is doing an adequate job of retaining the performance of the

rigidifying control.

trajectories also display this trend.
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5.3 Deformation Shaping vs, PID Contr

A design for PID control was made so that the error dynamics
would be no faster than the deformation shaping fast dynamics. The
PID control using all three actuators, whose design is detailed in
Appendix E, is compared to the deformation shaping control. If the
top actuator failed or was unavailable, a stable PID control using the
bottom two actuators could not be found. A comparison of the
controls for the exponential and sinusoidal commanded trajectories is
made in Table 10.

The PID control outperformed the deformation shaping for the
exponential commanded trajectory in terms of response time, but it
did not do as well for the sinusoidal commanded trajectory. Even
though the deformation shaping used only two controls, instead of

three, it was able to beat the PID control in this case.
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Table 10

Deformation Shaping vs. PID
Performance _Comparison

Exponential Sinusoidal
Trajectory Trajectory
Category
Deformation PID Deformation PID
Shaping Shaping
T2 (max) 0 3 Nm 0 4.6 Nm
TI (max) 5 Nm 40 Nm 3.25 Nm 16 Nm
TD(max) 3 Nm 3 Nm 3 Nm 3 Nm
2% Settling
Time 2 sec 4 sec 2 sec -
3
-8, ] .0025
error "after 0 .0 0 34
transient (3%)
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5.4 formation_Shaping v n

Deformation shaping is compared with a "modern” control in
the form of an LQR design. The LQR control was designed to have
approximately the same maximum required torque magnitudes as
the deformadon shaping, so the responses could be compared. The
LQR design is detailed in Appendix F.

The LQR control performance was comparabl to the
deformation shaping control performance.

Table 1

Deformation Shaping vs. LOR
Performance Comparison

Deformation
Category Shaping LQR
'Ii (max) 5.2 Nm 9 Nm
TD(max) 2.1 Nm 3.5 Nm
2% settling time 2 seconds 1.6 seconds

Table 11 compares the LQR design with the deformation shaping case
with =3.6r and K=7 for the exponential commanded trajectory. The

LQR design was selected to have comparable control torques, and the
required settling time was then found comparable. However,

deformation shaping has an advantage, although it didn't apply in
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this problem. An LQR design requires full state feedback (feedback
of all dynamic state variables) for every control torque, whereas
deformation shaping does not require this in general. Only the
torques with a fast control component, such as T;, may require full
state feedback (but do not have to). The other torques almost always

do not.

5.5 umm f Comparisons of Resul

After comparing the various methods, several observations can
be made. In general, it seems that deformation shaping, using only
two controls in this problem, can achieve performance about equal to
that by PID or LQR methods using all three controls. The price paid
for this capability is the need for feed forward of higher derivatives
of the commanded trajectory. A summary of the advantages and
disadvantages of the various control solutions is presented in figure

11.
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V1. Future Work

Many unanswered questions remain to be investigated. One
unknown is the effect of disturbances to the fast dynamics discussed
in 3.5. Also, alternative methods of introducing the fast control are
possible, such as introducing the fast control after the slow control
has been found. Another question is whether deformation shaping
can be used for tracking targets, since it requires higher derivatives
of the desired trajectory. A technique of real time interpolation of
bearings only data to generate higher rates used in robotics is found
in [Ref. 7] , and might be useful. The sensitivities to parameter
variations need to be explored. Finally, various schemes, such as
treating the slow manifold as a sliding surface for Variable Structure
Control, might be added and tested for an increase in the robustness

of the control, albeit at the cost of higher required bandwidth.
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VII. Conclusions

The deformation shaping method was able to solve the problem
using only two controllers instead of all three. It was able to achieve
exactly the correct trajectory for the ideal case. The need for a good
slow control design was revealed by the Scenario B results. Initial
conditions affected only the transient response levels, while the
response time remained the same. Parameter estimation error was
found to have a significant impact on the response accuracy, and
should be investigated further. Sensor noise, on the other hand, had
little effect on the accuracy.

The various comparisons with the other methods confirmed
that deformation shaping with only two controllers could perform
almost as well as the other methods using all three actuators. The
price for this capability was the need for higher derivatives of the
commanded trajectory,A and higher complexity.

The various advantages of deformation shaping make it a

method deserving further study.
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Actuator Dynamics
The actuators for T; and T: are standard permanent magnet DC

motors and can be found to have the following transfer function [Ref.

8.

KRJs
2
RJts +Js + KXz (A.1]

The parameters are summarized in table A.l

Actuator Parameter Values

Quantity Definition Value for Value for

T T

1 2

R Coil Resistance 8.76 Q 23 Q
KT Force Constant 3 lbf [A .39 Ibf ft/A
T Electrical Time Constant 4.56 ms 6 ms
J Inertia or Mass 141 g .03 b in sec’
l% Back EMF Constant 3.7 V/ft/sec |.53 V/rad/sec
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The actuator dynamics for Tp are not as simple. The dynamics
are the result of a complex internal hardware controller. From

experimental data, an approximate transfer function was found for it.

20xs

2 2
s +20ns +100=x [A.2]

Compensation was performed on the motors for tw~ reasons.
First, it was desired to have a steady state input command cause a
steady state torque output instead of a steady state velocity output.
Secondly, certain BW values were needed for the actuators in order
for the model to be reasonable.

Through the use of the following integral feedback scheme,

T T

comm out

A » Dynamics >

K'/s —

with Kj1=11, Kp2=6, A;=12 and A;=7 the compensated actuator
dynamics were achieved. It was also assumed that it was possible to
compensate the Tp actuator to its given form [1]. The resulting
actuator BW levels were 1.5 Hz for Tp, 30 Hz for T;, and 8.5 Hz for T,.
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Appendix B
Evaluation of Constants ¢;

The constants cg to cg arise when the controls are rewritten
from a transfer function form to a state space form. In general, they
are the result of synthetic division 'and/or partial fraction expansions
of the various terms. The constants used in scenario a will be
evaluated first, then those from scenario B.

The constants ¢o and ¢; come directly from synthetic

division of [47].

co= ml - b [Bl]
¢,= mg - bim; - b) [B.2]

These terms show up in many of the following expressions.
The terms ¢, c3, and c4 arise from the partial fraction
expansions of the various terms. Intermediate temporary

expressions tj, tz, and t3 are used to make the expressions less

cumbersome.
ta- a1(20'2 +20b) - (Eﬁ- 23,62 - blt; - a,(20 + b))
Cr=
(20 .29 -b)
b (B.3]
cy=t; - 3;(20 +b) - c5 - Ijc; (B.4]
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_t3 - 2a;bo? - 2ty0?

Cq4

b MB.5]
where
ty = aym; + 39k, (B.6]
ty = aymg + myag + ki) (B.7]
t3 = mglag + ki) [B.8]

The new constants introduced in Scenario B were cs, ¢cg, ¢7, and
cg. The values for co and c; were as above. The constant for ¢5 was

merely a convenient definition.

cs = -20160 A [B.9]

The others again come from partial fraction expansion and are

defined using intermediate expressions for simplicity.

cg = (bts - bts + tg) [B.10]
C7=1t4 -Cq (B.11]
cg = -by +ts + beg [B.12]
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where

ts

t6

=CqoCs +C; - 101

mgcs - 100%(m; + cs)

- 10bA%(cg + ¢s)
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Appendix C

100
119
120
130
149
159
160
179
18eQ
190
200
219
220
230
240
258
269
270
280
290
309
310
320
330
340
350
360
370
380
390
490
410
420
430
449
450
450
470
480
490
500
S1e
520
530
540
550

Program Listing

PROGRAM MAIN(TAPE11, TAPE12, INPUT=TAPEI2, OUTPUT)
EXTERNAL DERIVS,ESPRK4 ,INRKPC

CALL ESPII(DERIVS,ESPRK4 ,INRKPC )

END

SUBROUTINE CONTROL(TS4,TS3,752,TS1,TS,Y,TC1,TC2,7D)

REAL TS4,753,752,7T81,T5,7Ct,TC2,T0,516,LAM A1 AR K K1 K2
REAL M1 ,M0,B,I1,12,IT,CO

REAL Y(100)

LOGICAL FLAG

COMMON/THETATS/TTS ,TTS1,TTS2

COMMON/PARAM/S16 ,LAM A1 ,AQ K K1,K2 MI M@ B, I1,12,1T,C0,AAA,BBB,CCC

COMMON/FLAGS/FLAE

Y20 = Y(20)

Y8 = Y(8)

TC2 = 0.0

TFAST = AleY(G) + ABeY(S) ~ AleY(4) - ABeY(I)

TCI=TFAST+(I1¢12/K2)e(T54 + 2.0¢SI6eTS3 + 2.0¢516¢516¢7S2)

1 ¢ (I1e2eK/K2)4(TS1 = Y(B) + (M1-B)e(TS - Y(5)) + Y8)
2 + Kle{Y(5) = Y(1))

TO = (ITeTTS2 + 2.0%I1TeCDe(TTSI-Y(2)) + ITeCOCDe(TTS-Y(1))) -
1 ( (Kel2/K2)4(A1e(TS-Y(S))+Y20+4Y(18))4(I2/K2)e(AT+TSI+(KI+AQ)e
2 TS2)4(-11e124K/K2)e((TSI=-Y(B))+(MI-B)e(TS5-Y(5))+Y8)

3 - (11€]2/K2)0(TS4+2,95]6¢75342,9516¢516e782) )

RETURN

END

SUBROUTINE 1CCOMP (T,Y)

DIMENSION Y(100),PAR(100)

COMMON/SWTCHS/SWTCH(SY ) ,SWMEM(SR ,4) MAXSWS ,MAXMEM ,NEVENT

COMMON/PARS/PAR
REAL SI6,LAM,A! AQ K K! K2 ,M1 MO B, I, I2,IT

COMMON/PARAM/SIG ,LAM A1 ,AQ K K1 K2 M1 MO,B8,I1,12,1IT,CO,AAA BBB,CCC
COMMON/STPCON/HP ,H ,FIXSTP ,HMIN ,HMAX

FIXSTP = @.00!

LAM = 3.1415927

CO = 3.1415927

It = 1,827

12 = 0.863

IT = 8.417

K1=2.,27

K2 = 49.8

SIG = @.5¢(7.2361)eLAM

AQ = 2.Q9516¢SI6+11 = K1 = (I11+4]12)eK2/12
Al = 2,0¢S16°11

K = 4,¢355,92/49,8¢K2/(11¢12)
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560
579
580
530
530
619
620
620
640
659
669
670
680
630
700
710
729
730
740
75@
762
779
780
790
gae
819
829
830
849
85@
860
879
880
8399
909
910
929
930
940
952

M1=Sl6

MO = SIG*S16/4.

B = SI6

Ct = Al+MI+AQ+K!

€2 = Al+MA+MI+(AQ+KT)

C3 = MQAe(AQ+K1)
AAA @ ( C2 - A18(2,4S5164S16+2,.9516¢8) - (C3/B-2.4A1¢516¢S16)

1 -Be(C1-A18(2.¢5]6+8)) )/( 2,¢5]6-2.#5]16+516/8-8)
B8B = C! - Ale(2.¢5]G+8) - AAA
CCC = (C3-2.¢A1¢S5]16+S16*B-2.9516+SI6+AAA)/B

Y(3) = 9.021
RETURN

END

SUBROUTINE DERIVS(T,Y,DY,STOP)

DIMENSION Y(1@@), 0Y(10Q), PAR(100)
COMMON/SWTCHS/SWTCH( 5@ ) ,SWMEM( 5,4 ) ,MAXSWS ,MAXMEM ,NEVENT
COMMON/PARS/PAR

REAL SIG,LAM,Al ,AQ K K1 ,6K2 M1 M0 ,B,I1,12,IT

REAL K11,K12,K21,K22 K11 ,KI2 ,AK ,AA KK KA

REAL CD,TTS2,TTS!,TTS

LOGICAL FLAG
COMMON/PARAM/S16 ,LAM A1 ,AQ K K1 ,K2,M1 M0 ,B,11,12,1T,CD,AAA BBB,CCC

COMMON/TOQUT/TS,TS1 ,TS2,753,754,TCt ,7C2,T0
COMMON/THETATS/TTS ,TTSt ,TTS2
COMMON/STPCON/HP ,H ,FIXSTP ,HMIN ,HMAX

COMMON/FLAGS/FLAS
DATA KK K11 ,K21 ,AK KI1/219.3,219.3,27137.0,29.127,6.47/

DATA KA K12 ,K22 ,AA ,KI2/166.67,166.67,5991.4,7.0,6.9/
DATA FLAG/.FALSE./

DATA P1/3,1415327/
OATA CONST,TAU,TAUD/@.087,.5,.5/

TTS = CONSTe(1.8 - EXP(-T/TAUD))

TTS! = (CONST/TAUD)«EXP(-T/TAUD)

TTS2 = -(CONST/(TAUD*TAUD ) *EXP(-T/TAUD)
TS = CONSTe(1.9 - EXP(~T/TAU))

TS! = (CONST/TAU)¢EXP(=T/TAU)

TS2 = -(CONST/(TAU*TAU) )eEXP(-T/TAU)
TS3 = (CONST/(TAU++3.0))¢EXP(-T/TAU)
TS4 = -(CONST/(TAUee4 ) )eEXP(-T/TAU)
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%@ C
979 C
380 C
9% C
1990
1919 C
1929
1830 C
1940
1935@
1069
1979
1080
1990
110@
1119

TS = 7S1 = 752 = 9.9
TS3 = TS4 = 2.0

CALL CONTROL(TS4,783,7S2,7S1,TS,Y,TC1,7C2,TD)
ERROR = TS = Y(5)

oY) Y(2)

0Y(2) (1,0/7IT)e(TO = TC! = KleY(1) + Kle¥(3))

DY(3) = Y(4)
OY(4) = (1,Q/11)e(TC1 = TC2 = K2#(Y(3)=-Y(S)) =~ K1e(Y(3)-Y(1)))

oY(s) Y(8)

pyg) (1.08/12)e(TC2 = K2e(Y(S) - Y(3)))
DY(7) = -BeY(7) + KeTS2 + KeMIeTS| + KeMQsTS
oY(8) ~BeY(8) + (MQ ~ BeM! + B#B)*(ERROR)

1120 C ses¢e ACTUATOR INTEGRATORS #tteee

1130
1149
1159
1162
1179
1189
119@
1209
1219 .
1229
1230
1249
1259
1269
1270
1289
129 C
1300
1319
1320
1330
1340
1350
1360
1370
1389
1390
1400
1410
1429
1430

DY(3) = Y(1Q)
OY(1@) = =K1leY(18) - (K21 + KITeKK)2Y(3) + AKsKKeKI1eTCH

DY(11) = Y(12)
DY(12) = -K12eY(12) - (K22 + KI2¢KA)eY(11) + AA®KA¢KI2eTC2

DY(13) = Y(14)
DY(14) = -20.04PJeY(14) = (10.04P])ea2,20Y(13) +(10.0+P])e42.0¢7D

Dy(1S5) = Y(16)
DY(168) = <2.¢SI0eY(16)-2.43104SI0eY(15)+8B8s TSY 4 CCCsTS
OY(17) = (-B)eY(17) + AAASTS

DY(18) = Y(19)
DY(19)2=2,¢S1G#Y(19)-2.9S1GeSI6*Y(18)+BBBe(TS1~Y(6))+CCC*(ERROR)

DY(20) = -BeY(2Q) + (AAA - J1¢(M3 - BeM! + B+B))«ERROR
DY(21) = (-B)eY(21)+4(MQ~B#(M1-B))eTS

DY(22) = (-B)eY(22)+(MO~Be(MI-B))eY(S)
DY(1S)=0Y(18)=0Y(17)=Q,

DY(21)=0Y(22)=9.

RETURN

END

SUBROUTINE SWINPT(VALUES,T,Y)

OIMENSION VALUES(SQ), Y(IOB) PAR(100)
COHHON/SUTCHS/SUTCH(SG) SUHEH(SO ,4) MAXSWS HAXHEH NEVENT
COMMON/PARS/PAR

RETURN

END

SUBROUTINE SWMEMN(VALUES, T, Y)

DIMENSION VALUES(SQ), Y(100), PAR(100)
COHHON/SUTCHS/SUTCH(SO) SUHEH(SO .4) ,MAXSUS MAXMEN NEVENT
COMMON/PARS/PAR

RETURN

ENO
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1440
1450
14680
1479
1480
1490
1599
1519
1529
1530
1549
1559
1569
1579
1580
1590
1629
161Q
1629
1630
1640
1650
1669
1670
1680

1630
1790

1710
1729

1730
1749

1758
1769
1779
1789

1790

SUBROUTINE QUTPUT(T,Y,DY ,PLOT ,PRINT,STOP)

DIMENSION Y(19Q), PAR(10Q), PLOT(100), PRINT(6Q), OY(10Q)
COMMON/SWTCHS/SWTCH( S ) ,SWMEM(SQ ,4) ,MAXSUYS ,MAXMEM NEVENT
COMMON/PARS/PAR

REAL TS,TS1,7S2,753,754,7C1,TC2,TD
COMMON/TOOUT/TS,TS1,752,753,7S4,7TCt1 ,7C2,TD
COMMON/THETATS/TTS ,TTS1 ,TTS2

DATA IAN/1/

IF(IAN .EQ. 1)THEN

IAN = @
CALL ANALYZE(T,Y)
ENOIF

PRINT( 1)sPLOT(1)=T
PRINT( 2)=PLOT(2)=TS-Y(S)
PRINT( 3)=PLOT(3)=TS1
PRINT( 4)=PLOT(4)=TC!
PRINT( S)=PLOT(S)=TC2
PRINT( 6)=PLOT(6)=TD
PRINT( 7)=PLOT(7)=Y(1)
PRINT( 8)=PLOT(8)=Y(3)
PRINT( 8)=PLOT(9)=Y(S)
PRINT(12)=PLOT(10)=Y(9)
PRINT(11)=PLOT( 11 )mY( 1)
PRINT(12)=PLOT(12)=Y{13)
PRINT(13)=PLOT(13)=Y(T)
PRINT(14)=PLOT(14)=Y(8)
PRINT(1S)=PLOT(15)=Y(18)
PRINT(16)=PLOT(16)=Y(20)
PRINT(17)=PLOT(17)=TS
PRINT(18)=PLOT(18)=TTS
PRINT(19)=PLOT(19)=Y(5)~Y(3)
PRINT(20)=PLOT(20)=Y(3)=Y(1)
RETURN

END
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Appendix D

Rigidifying Control Design

The rigidifying or deformation suppression case is just a special
case of deformation shaping. It makes the flexible structure behave
as a rigid body after the fast dynamics die out. The slow manifold in
this case is called the rigid body manifold. Recall the equations
resulting from the singular perturbation expansions [38] to [41].
Using these equations, slow controls can be designed similar to what

was previously done for the deformation shaping case. The resulting

torques are:

T, =1,(0 5 +2A(8

. 2 s
2-02) +A (8, - 8,)) [D.1]

~ «* .* 2 .
Ti=(I;+1) {8 2+2A(8,-6,) +X (8, -6,)) +k,(6,-6p [D.2]

T =Ty + (], - (6 2y 310, - 0 +2w148, - 6,)
I [C3]
' S 2 e
Tp=Ir{6r+2u@1-06p +p O 1-0p}+
w® o* 2 o
(1, +I){0 3 +20(8 5 - 8) +A (8 5 - 8,)) D.4)

where 1/A is the time constant of the 02°-82 error dynamics, 1/p is

the time constant of the 61°*-01 error dynamics, and 1/w is the time

constant of the critically damped fast dynamics. Unlike the

deformation shaping control, the time scale separation between A and

w can be chosen.
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Appendix E

PID Control Design

The PID controller for T, was designed to make the angle error
from the desired trajectory go to zero. The bottom two controllers
were designed to make the angle between the two adjacent bodies go
to zero. The controllers for these actuators were designed to treat
the bodies above them as a single rigid body. Thus, the T; controller
treated the pointing mirror and optical bench as one body with
inertia Ij+I5. The Tp controller was designed treating the body as
entirely rigid with inertia It+I;+Is.

The resulting parameter gains were:

Kp=K=Kp=500 [E.1]
Kpp=Kp;=Kp2=100 (E.2]
Kpp=Kp1=Kp2=5 [E.3}

Of course, a better design is possible, but this one worked well for
the given problem.

A similar design using only T; and Tp worked adequately for
the exponential trajectory, but could not be stabilized for the
sinusoidal trajectory. The best that could be achieved with the PID

control would be marginally stable,
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Appendix F
LQR Control Design

The LQR design was done with the following costs.

Cost for use of Ty = 1000
Cost for use of T| = 1
Cost for use of Tp = .01

Cost for error in ®3 = 10
Cost for error in ©; = 1

Cost for error in ©1 = 5

These gave reasonable torque levels for the resulting controls, which

were of the form:

T2 = Kmo(ér - e.r) + KZD(GT - 91.') +.K21D(é)l - 9;)
+Kail®) - 01) + Kpl6; - 63)+ Ky -03) g1

T = KIDD(éT - 9;’ + KxD(GT - 9‘1.') +.Kno(é1 - 9;)
+Kiler - 0}) + kil - 63+ xder-03)  Ea

Tp= KDDD(éT - 9;} + KDD(GT - 9‘1.') :"'.KDID(éI - 9:)
+Kpil®: - 1)+ Koz - 03+ Kodes - 03) 3

The values used for ©;* and its derivative were identical to those of

©2° and its derivative, The values for ©1* were given as in Scenario
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i
i | |
l A. The resulting feedback gains were:
For Ta: K>pp = 6.5E-05 Kip = 3.9E-03

I Ksi1p = 3.8E-03 K) =.14
l Kj>p = .03 Kj2 = .096
i For T;:  Kipp = -1.92 Kip = -4.19

Kiip =31.7 Ky =325
l Kiap = 35.8 K2 =-443
I For Tp: Kppp = 8.43 Kpp = 89.7
l Kpip = 25.4 Kp; = 183
l Kpip = 14.85 Kps = -43.5
i
I
i
]
i
i
i
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